Tag: simulation

A Multi-Sensor System for Enhancing Situational Awareness and Stress Management for People with ASD in the Workplace and in Everyday Life

A new paper has been accepted for publication in the Proceeding of the 52nd Hawaii International Conference on System Sciences (HICSS 2019), Maui, Hawaii, United States of America, January 8-11, 2019. The selected article is: Filippo Sanfilippo and Kiran Raja. A Multi-Sensor System for Enhancing Situational Awareness and Stress Management for People with ASD in the Workplace and in Everyday Life. In Proceeding of the 52nd Hawaii International Conference on System Sciences (HICSS 2019), Maui, Ha

Bridging the gap between bio-inspired steering and locomotion: A Braitenberg 3a Snake robot

A new paper has been accepted for publication in the Proceeding of the 15th IEEE International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, November 18-21, 2018. The selected article is: Inaki Rano, Augusto Gómez Eguíluz and Filippo Sanfilippo. Bridging the gap between bio-inspired steering and locomotion: A Braitenberg 3a Snake robot. Accepted for publication in the Proceeding of the 15th IEEE International Conference on Control, Automation, Robotics and Vision

SnakeSIM: a ROS-based Control and Simulation Framework for Perception-Driven Obstacle-Aided Locomotion of Snake Robots

A new paper has been accepted for publication in Artificial Life and Robotics, Springer. The selected article is: Filippo Sanfilippo, Øyvind Stavdahl and Pål Liljebäck, “ SnakeSIM: a ROS-based Control and Simulation Framework for Perception-Driven Obstacle-Aided Locomotion of Snake Robots,” Artificial Life and Robotics, Springer, 2018, DOI: 10.1007/s10015-018-0458-6.

SnakeSIM, our ROS based Framework for POAL of Snake Robots has been accepted for publication at ROBIO 2017, Macau, China

A new paper has been accepted for publication in the Proceeding of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 2017. The selected article is: Filippo Sanfilippo, Øyvind Stavdahl and Pål Liljebäck. SnakeSIM: a ROS-based Rapid-Prototyping Framework for Perception-Driven Obstacle-Aided Locomotion of Snake Robots. Accepted for publication to the Proceeding of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 2017.

SnakeSIM, our Snake Robot Simulation Framework for POAL has been accepted for publication at SWARM 2017, Kyoto, Japan

A new paper has been accepted for publication in the Proceeding of the 2nd International Symposium on Swarm Behavior and Bio-Inspired Robotics (SWARM), Kyoto, Japan, 2017. The selected article is: Filippo Sanfilippo, Øyvind Stavdahl and Pål Liljebäck. SnakeSIM: a Snake Robot Simulation Framework for Perception-Driven Obstacle-Aided Locomotion. Accepted for publication to the Proceeding of the 2nd International Symposium on Swarm Behavior and Bio-Inspired Robotics (SWARM), Kyoto, Japan, 2017.

Install ROS and Gazebo on Ubuntu Linux 14.04

To achieve ROS integration with stand-alone Gazebo, the following steps may be followed.

Control Strategies for Snake Robot Locomotion in Challenging Outdoor Environments (SNAKE)

This project aims to develop new methods and tools to control snake robots for use in challenging real-life operations, in earthquake-hit areas, pipe inspection for oil and gas industry, fire-fighting operations and search and rescue. The research team is composed of some members from the Department of Engineering Cybernetics, NTNU, including Associate Professor Øyvind Stavdahl, Research Scientist Pål Liljebäck and Postdoctoral Fellow Filippo Sanfilippo. Other members of the research team are

Integrated Marine Operation Simulator Facilities for Risk Assessment Including Human Factors

Real offshore operational scenarios can involve a considerable amount of risk. Sophisticated training programmes involving specially designed simulator environments constitute a promising approach for improving an individual's perception and assessment of dangerous situations in real applications. One of the world's most advanced providers of simulators for such demanding offshore operations is the Offshore Simulator Centre AS (OSC). However, even though the OSC provides powerful simulation tool

SimHaptics has been accepted for publication at IECON2015

A new paper has been accepted for publication in the Proc. of the 41st Annual Conference of the IEEE Industrial Electronics Society (IECON) to be held in Yokohama, Japan, November 9 – 12, 2015. The selected article is: Filippo Sanfilippo, Paul B.T. Weustink and Kristin Ytterstad Pettersen. A Coupling Library for the Force Dimension Haptic Devices and the 20-sim Modelling and Simulation Environment. Accepted for publication to the Proc. of the 41st Annual Conference of the IEEE Industrial Elec

A Game-based Learning Framework for Controlling Brain-Actuated Wheelchairs

Paraplegia is a disability caused by impairment in motor or sensory functions of the lower limbs. Most paraplegic subjects use mechanical wheelchairs for their movement, however, patients with reduced upper limb functionality may benefit from the use of motorised, electric wheelchairs. Depending on the patient, learning how to control these wheelchairs can be hard (if at all possible), time-consuming, demotivating, and to some extent dangerous. This paper proposes a game-based learning framework

On Usage of EEG Brain Control for Rehabilitation of Stroke Patients

This paper demonstrates rapid prototyping of a stroke rehabilitation system consisting of an interactive 3D virtual reality computer game environment interfaced with an EEG headset for control and interaction using brain waves. The system is intended for training and rehabilitation of partially monoplegic stroke patients and uses low- cost commercial-off-the-shelf products like the Emotiv EPOC EEG headset and the Unity 3D game engine. A number of rehabilitation methods exist that can improve mo

A Fully-Immersive Haptic, Audio and Visual Experience Framework

This work presents the development of an open-source low-cost framework for a fully-immersive haptic, audio and visual experience. This framework is realised by exclusively adopting commercial off-the-shelf (COTS) components and tools. In particular, vibration actuators and open-source electronics are employed in the design of a pair of novel and inexpensive haptic gloves. These gloves allow for establishing a kinaesthetic link between a human operator interacting with a computer-generated envir

Supervised Theses

Spring 2015
Interfacing an EEG Headset with a 3D Simulation Environment for Rehabilitation in Partially Paraplegic,Stroke Victims.
Student: Tom Verplaetse; BSc in Automation Engineering, Department of Engineering and Natural Sciences, AAUC.
Advisors: Robin Trulssen Bye, Filippo Sanfilippo.
Interfacing an EEG Headset with a 3D Simulation Environment for Rehabilitation in Partially Paraplegic,Stroke Victims
On the Usage of Single-Electrode EEG Devices for Biometric-Based Person Identification.
Students: Guilherme Felipe Bosger, Rodrigo Bessa Juliao, Hugo de Almeida Ribeiro; BSc in Automation Engineering, Department of Engineering and Natural Sciences, AAUC.
Advisors: Filippo Sanfilippo, Siebe van Albada.
On the Usage of Single-Electrode EEG Devices for Biometric-Based Person Identification
Active Heave Compensating Crane for Loading/Unloading of Platform Supply Vessels (PSV).
Students: Ivan Flatval, Ørjan Gjelseth; BSc in Automation Engineering, Department of Engineering and Natural Sciences, AAUC.
Company Contact: Dag Sverre Grønmyr, Rolls Royce
Marine.
Advisors: Siebe van Albada, Filippo Sanfilippo.
Active Heave Compensating Crane for Loading/Unloading of Platform Supply Vessels (PSV)

Supervised Student Projects

Among all the supervised student projects, a selection of them is listed in the following.

Summer 2015
Grasping and Locomotion for Modular Snake-Like Robots in a Search and Rescue Operations Scenario.

Student: Per Myren. Student Summer Job within the BSc in Automation Engineering, Department of Engineering and Natural Sciences, AAUC.
Advisors: Filippo Sanfilippo and Houxiang Zhang.
Grasping and Locomotion for Modular Snake-Like Robots in a Search and Rescue Operations Scenario
Fall 2014
Wearable Tactile Feedback Integration for Offshore Operations.

Students: Bjørn Tomren, Kai Henning Humberset and Rolf-Magnus Hjørungdal; within the course of Mechatronics, robots and deck machines, BSc in Automation Engineering, Department of Engineering and Natural Sciences, AAUC.
Advisors: Filippo Sanfilippo and Houxiang Zhang.
Wearable Tactile Feedback Integration for Offshore Operations
A Wave Simulator Framework for Offshore Crane Operations.

Students: Håkon Østrem, Håkon Eikrem and Bjarne
Humlen; within the course of Real-time computer programming, BSc in Automation Engineering, Department of Engineering and Natural Sciences, AAUC.
Advisors: Filippo Sanfilippo, Girts Strazdins, Ivar Blindheim and Webjørn Rekdalsbakken.
Within the following project: project description.
A Wave Simulator Framework for Offshore Crane Operations
A Camera Guided Laser Shooter for Tracking Moving Objects.

Students: Birger Skogeng Pedersen and Webjørn Yksnøy Bergmann; within the course of Real-time computer programming, BSc in Automation Engineering, Department of Engineering and Natural Sciences, AAUC.
Advisors: Filippo Sanfilippo, Girts Strazdins, Ivar Blindheim and Webjørn Rekdalsbakken.
Link: project demo.
A Camera Guided Laser Shooter for Tracking Moving Objects
Advanced Control Methods for a Search & Rescue Drone.

Students: Rolf Ottar Rovde, Kristian Østgaard and Kim Gjøran Robertsen; within the course of Real-time computer programming, BSc in Automation Engineering, Department of Engineering and Natural Sciences, AAUC.
Advisors: Filippo Sanfilippo, Girts Strazdins, Ivar Blindheim and Webjørn Rekdalsbakken.
Link: project demo.
Advanced Control Methods for a Search & Rescue Drone
An Automated Monitoring System for Detecting Suspicious Subjects in Crowded Areas.

Students: Benjamin Selvåg Skinnes, Øyvind Valderhaug Strømsheim and Steffen Sunde; within the course of Real-time computer programming, BSc in Automation Engineering, Department of Engineering and Natural Sciences, AAUC.
Advisors: Filippo Sanfilippo, Girts Strazdins, Ivar Blindheim and Webjørn Rekdalsbakken.
Link: project demo.
An Automated Monitoring System for Detecting Suspicious Subjects in Crowded Areas
Summer 2013
Development of an Integrated Virtual-Prototyping Framework for Designing Modular Robotic Hands.

Students: Stian Sandviknes, Ole Jonny Varhaugvik and
Andreas Bull Enger; Student Summer Job within the
BSc in Automation Engineering, Department of Engineering and Natural Sciences, AAUC.
Advisors: Filippo Sanfilippo and Houxiang Zhang.
Within the following project: project description.
Development of an Integrated Virtual-Prototyping Framework for Designing Modular Robotic Hands
Summer 2012
Haptic Feedback Integration for Maritime Crane Control.

Student: Lars Ivar Hatledal; Student Summer Job within the BSc in Automation Engineering, Department of Engineering and Natural Sciences, AAUC.
Advisors: Filippo Sanfilippo and Houxiang Zhang.
Within the following project: project description.
Haptic Feedback Integration for Maritime Crane Control
Spring 2012
A Modular Grasping Snake Robot.

Students: Gøncz Thomas, Frostad Katrine, Hjelme Camilla Hesseberg, Helland Thomas; within the
course of Mechatronics, robots and deck machines, BSc
in Automation Engineering, Department of Engineering and Natural Sciences, AAUC.
Advisors: Filippo Sanfilippo and Houxiang Zhang.
Link: project description.
The Demonstrator and Imitator Robots
The Demonstrator and Imitator Robots.

Students: Ole Martin Longva, Marius Pieroth Skinnes, Christian Steiner Nilsen, Jan Ove Strand; within the
course of Mechatronics, robots and deck machines, BSc
in Automation Engineering, Department of Engineering and Natural Sciences, AAUC.
Advisors: Filippo Sanfilippo and Houxiang Zhang.
Link: project description.
The Demonstrator and Imitator Robots
A Modular 5-Legged Robot.

Students: Håkon Sandanger Lunheim, Kenneth
Strandabø, Eskil Fjørtoft Breivik, Jonas Roald Nordstrand in one group and Lars Ivar Hatledal, Ådne
Heggem and Økland Higraff Espen in another group;
within the course of Mechatronics, robots and deck machines, BSc in Automation Engineering, Department of
Engineering and Natural Sciences, AAUC.
Advisors: Filippo Sanfilippo and Houxiang Zhang.
Link: project description.
A Modular 5-Legged Robot
A Modular H-Shaped 4-Legged Robot.

Students: Roy Perez Folke-Olsen, Kim Andrè Langelo,
Christoffer Flesjø Toverød; within the course of Mechatronics, robots and deck machines, BSc in Automation
Engineering, Department of Engineering and Natural
Sciences, AAUC.
Advisors: Filippo Sanfilippo and Houxiang Zhang.
Link: project description.
A Modular H-Shaped 4-Legged Robot
A Modular Robotic Hand with Vision Object Recognition capabilities.

Students: Kim Andrè Sund, Kjetil Thorsen, Svein Rune Stangeland, Brita Erica Godfrey; within the course ofMechatronics, robots and deck machines, BSc in Automation Engineering, Department of Engineering andNatural Sciences, AAUC.
Advisors: Filippo Sanfilippo and Houxiang Zhang.
Link: project description.
A Modular Robotic Hand with Vision Object Recognition capabilities

Funding Projects

The work concerning maritime cranes and robot was partly supported by the Research Council of Norway through the Centres of Excellence funding scheme, project number 223254 and the Innovation Programme for Maritime Activities and Offshore Operations, project number 217768. In this context, a close cooperation is established with different partners including Rolls-Royce Marine AS, Norway, Huse Engineering, and the Offshore Simulation Centre AS.

Support was also received from the Centre for Autonomous Marine Operations and Systems (AMOS), Research Council of Norway, Centres of Excellence funding scheme, project number 223254.

Regarding robotic hands, the work was partially supported by the European Commission with the Collaborative Project no. 248587, “THE Hand Embodied”, within the FP7-ICT- 2009-4-2-1 program “Cognitive Systems and Robotics” and the Collaborative EU-Project “Hands.dvi” in the context of ECHORD (European Clearing House for Open Robotics Development). In this context, a close cooperation was established with the Department of Advanced Robotics at the Istituto Italiano di Tecnologia, Italy, and the Department of Information Engineering at the University of Siena, Italy.

Filippo Sanfilippo