I am very glad that our team, UiA - University of Agder, UiA - Mechatronics / Mekatronikk, Collaborative Robots team, is going to participate to TIGHT - Tactile InteGration for Humans and arTificial systems (III Edition) IEEE RO-MAN 2022, Full Day Workshop Hybrid format, Sept. 2nd, 2022.
During the COVID-19 pandemic, social and work activities have become mostly virtual, and haptic interaction with people (and things) have become in most cases impossible, due to lock-downs and limitations. In addition, even when possible, fundamental communication gestures like hugging, or shaking hands are now perceived as dangerous in view of the spread of the contagion. Haptic technologies may play a key role in helping us regain the haptic communication channel. In this workshop, we will discuss how new tactile communication interfaces and paradigms can be exploited in human-human interactions to convey emotions, guidance, and confidence, with a focus on visually impaired users. Part of the workshop will be devoted to applications of tactile communication in human-robot collaborative and assistive scenarios. In fact, in the last 10 years, especially with the advent of wearable technologies, it has been shown that haptic feedback plays an important role also in interfacing humans with robotic devices. Going beyond sensory substitution in teleoperation tasks, where the haptic interface feeds back the force exerted by the robot on a remote environment, wearable interfaces enable new uses of haptic feedback. When adopted in conjunction with assistive and collaborative robots, for example, tactile alerts or acknowledgments (e.g., ad-hoc designed vibration patterns) can increase the mutual understanding between the human and the robotic agents. Speakers with different backgrounds will talk about advantages and disadvantages of exploiting the tactile channel to transmit information in human-human and human-robot interactions, focusing, in particular, on the neuroscientific and technological challenges that derive from the use of wearable haptic interfaces.
Some of the results presented are part of the AugmentedWearEDU project, which includes the following partners: