
SnakeSIM: a Snake Robot Simulation Framework for Perception-Driven
Obstacle-Aided Locomotion

Filippo Sanfilippo1†, Øyvind Stavdahl1 and Pål Liljebäck1

1Dept. of Eng. Cybernetics, NTNU – Norwegian University of Science and Technology, 7491 Trondheim, Norway
(Tel: +47-942-58-929; E-mail: filippo.sanfilippo@ntnu.no)

Abstract: Snake robot locomotion in cluttered environments where the snake robot utilises a sensory-perceptual system to
perceive the surrounding operational environment for means of propulsion can be defined as perception-driven obstacle-
aided locomotion (POAL). The development of POAL is challenging. Moreover, testing new control methods for POAL
in a real setup environment is very difficult because potential collisions may damage both the robot and the surrounding
environment. In this perspective, a realistic simulator framework may enable researchers to develop control algorithms
for POAL more safely, rapidly and efficiently. This paper introduces SnakeSIM, a virtual rapid-prototyping framework
that allows researchers for the design and simulation of control algorithms for POAL. To demonstrate the potential of
SnakeSIM, a possible control approach for POAL is also considered as a case study.

Keywords: perception-driven obstacle-aided locomotion, snake robots, rapid-prototyping, ROS.

1. INTRODUCTION
Biological snakes may push against rocks, stones,

branches, obstacles, or other environment irregularities
in the terrain for locomotion, which allows them to
be remarkably adaptable to different types of environ-
ments. Snake robots that can mimic this variety of be-
haviour could open up to a variety of possible appli-
cations for use in challenging real-life operations, such
as explorations of earthquake-hit areas, pipe inspections
for the oil and gas industry, fire-fighting operations, and
search-and-rescue activities. Snake robot locomotion in
cluttered environments where the snake robot utilises a
sensory-perceptual system to exploit the surrounding op-
erational space and identifies walls, obstacles, or other
external objects for means of propulsion can be defined
as perception-driven obstacle-aided locomotion (POAL)
[1, 2]. The underlying idea is shown in Fig. 1. The snake
robot exploits the environment for locomotion by using
augmented information: potential push-points are chosen
(shown as cylinders), while achievable contact reaction
forces are illustrated by arrows.

The development of POAL is challenging. Further-
more, testing new control methods for POAL in a real

† Filippo Sanfilippo is the presenter of this paper.

Fig. 1 The underlying idea of snake robot perception-
driven obstacle-aided locomotion (POAL).

setup environment is very difficult because potential col-
lisions may damage both the robot and the surround-
ing environment. For these reasons, a realistic simula-
tor framework may enable researchers to develop control
algorithms for POAL in a realistic and safe simulation
setup. Robotic simulators are normally used in the de-
sign and testing of control algorithms. Related to this, the
Robot Operating System (ROS) [3] has emerged as a de
facto standard for robot software architecture among the
research community in recent years. The primary goal
of ROS is to provide a common platform to make the
design of capable robotic applications quicker and eas-
ier. Some of the features it provides include hardware
abstraction, device drivers, message-passing and package
management. In conjunction with ROS, Gazebo 3D sim-
ulator [4] can be adopted to efficiently simulate robots in
complex indoor and outdoor environments. Gazebo also
provides a robust physics engine, high-quality graphics,
and convenient programmatic and graphical interfaces. In
this perspective, ROS serves as the interface for the robot
model, while Gazebo is used to simulate both the robot
and its operational environment.

Even though, ROS and Gazebo provide advanced fea-
tures for general robotic applications, the main drawback
is that a comprehensive collection of tools, libraries, and
conventions specifically designed for rapid-prototyping
[5] POAL is still missing. The main contribution of this
work is the development of a rapid-prototyping frame-
work for POAL and the integration of this missing tech-
nology with ROS. This integrated framework will enable
researchers to develop control algorithms for POAL more
safely, rapidly and efficiently. To demonstrate the poten-
tial of SnakeSIM, a possible control approach for POAL
is also considered as a case study in this paper.

2. FRAMEWORK ARCHITECTURE
As highlighted in Fig. 2, the control framework is im-

plemented in ROS [3], while Gazebo [4] is adopted to
provide seamless simulations. In addition to ROS and



Gazebo, the RViz (ROS visualisation) [6] visualisation
tool is adopted to visualise and monitor sensor informa-
tion retrieved in real-time from the simulated scenario.
In particular, the normal and tangent vectors to the snake
robot at the contact points are visualised and continuously
updated according to the simulated scenario.

The proposed control framework is hierarchically or-
ganised, as shown in Fig. 2. The following abstraction
levels are defined:
• Perception/Mapping: this level is responsible for
achieving the functions of sensing, mapping and localisa-
tion. The snake robot’s sensory-perceptual data are used
to produce a representation of the surrounding environ-
ment. The output from this level matches the required in-
put from the motion planning algorithm, which involves
parsing or segmenting the resulting representations (e.g.
point-clouds) into simplified and more manageable data
(e.g. positions of the obstacles). This level is currently
underdevelopment;
• Motion planning: this level is responsible for decision-
making, path-planning and mission planning activities.
External system commands (e.g. a joystick operated by
a human operator or an external system) and the snake
robot’s perception/mapping data (e.g. obstacles relative
location and properties) are used to provide an input to
this level. The expected output from this level is the
robot’s path;
• High-level control: this level is the core of the con-
trol framework. This level enables researchers to de-
velop their own alternative control method for POAL.
Each possible control method must be compliant with
the interface of the framework. Each alternative control
method must combine force and torque information with
positional data to satisfy simultaneous position and force
trajectory constraints for mapping a desired parametrised
path to obstacle contact forces, and these forces to con-
trol inputs for the joint actuators, given a desired robot
velocity. The inputs for this level are the desired robot

ROS

High-level control

Gazebo+RViz

External 
system 

commands

Perception/mapping

Motion planning

Position 
controller

Obstacles, pose

Motor torquesactual contacts, actual 
shape, actual velocity

Desired velocity

Desired shape/path

Si
m

ula
to

r

Visual 
perceptual 

data

Tactile 
perceptual 

data

Co
nt

ro
l f

ra
m

ew
or

k

Velocity 
controller

Fig. 2 The proposed framework architecture for
SnakeSIM.

shape (which is the output from the level above), the de-
sired robot velocity (which can be set by external system
commands, e.g. a joystick or a mission control entity)
and the actual contacts (which are given from the below
level through the robot’s tactile perceptual system). The
expected output from this level consists of motor torques
for the joint actuators to satisfy simultaneous position and
force trajectory constraints.

Some of the framework features are currently under
developing. The implementation details of the framework
will be presented in a future paper.

2.1. Simulated scenario
To carry out our experiment, a simulation scenario is

built in Gazebo reproducing a cluttered environment. In
particular, cylindrical objects or other shapes are placed
in the scene and used as obstacles.

2.2. Snake robot model
To take full advantage of ROS, the snake robot model

is implemented according to the Universal Robotic De-
scription Format (URDF) [7]. The URDF is a specific file
format used in ROS to describe all elements of a robot,
such as links, joints, actuators and sensors. Simulated
controllers are then adopted to actuate the joints of the
snake robot. Simulated contact sensors are used to re-
trieve collisions with obstacles. Forces, torques, contact
positions and contact normals can be retrieved.

2.3. Snake robot sensors
Simulated contact sensors are adopted to retrieve

bump contacts. In particular, the gazebo ros bumper
controller is adopted [8]. Forces, torques, wrenches, con-
tact positions and contact normals can be retrieved. Dif-
ferent other sensors can be also added, such as a depth
camera, or an inertial measurement unit (IMU).

3. CASE STUDY AND SIMULATION
RESULTS

As a case study, a novel control algorithm for POAL,
which was previously presented by our research group
[9], is implemented and tested using SnakeSIM. The aim
of the selected control algorithm is to seek for a prag-
matic approach to POAL by reducing the problem from a
multi-dimensional formulation to only a two dimensional
instance with a direction along the path and the other di-
rection across the path. For further details, the reader is
referred to [9].

A related simulation was carried out. For the simu-
lation a desired propulsion speed, was indirectly set by
imposing fs = 35N . It should be noted that the joint
6 is controlled by the propulsion controller, while all the
others joints are controlled in position (joints are num-
bered from left to right, starting from the joint 1). As
shown in Fig. 3, a sequence of consecutive screenshots is
taken from SnakeSIM (for each screenshot, the left snap-
shot is from Gazebo and the right snapshot is from RViz)
demonstrating the effectiveness of the considered control
algorithm for POAL. In particular, the link 6 is rotated



(a) (b)

(c) (d)

Fig. 3 (a), (b), (c), (d) A sequence of consecutive screenshots taken from SnakeSIM (for each screenshot, the left snapshot
is from Gazebo and the right snapshot is from RViz). Note that the action forces are shown in this sequence.

upwards, pushing on the obstacle to its left. The whole
snake is then pushed slightly forward (links are numbered
from left to right, starting from the link 1). It should be
noted that the force polygon is also shown (red polygon)
for each screenshot highlighting the resultant propulsion
force (white arrow).

4. CONCLUSIONS AND FUTURE WORK
SnakeSIM, a virtual rapid-prototyping framework that

allows for the design and simulation of control algorithms
for perception-driven obstacle-aided locomotion (POAL)
was presented in this paper. The framework proposed is
integrated with ROS and enables researchers to develop
control algorithms for POAL in a simulated environment
with Gazebo. This integration makes the development of
POAL algorithms more safe, rapid and efficient. Once the
development phase is terminated, the designed control al-
gorithms can be tested on a real prototype and continu-
ously tuned with real sensor data. The integration with a
real snake robot prototype, the Mamba snake robot [10],
is currently undergoing.

The framework is built on open-source software. In
the future, different control algorithms for POAL may be
designed and tested. The framework may also be adopted
as an educational tool.

REFERENCES
[1] F. Sanfilippo, J. Azpiazu, G. Marafioti, A. A.

Transeth, Ø. Stavdahl, and P. Liljebäck, “A review
on perception-driven obstacle-aided locomotion for
snake robots,” in Proc. of the 14th International
Conference on Control, Automation, Robotics and
Vision (ICARCV), Phuket, Thailand, pp. 1–7, 2016.

[2] F. Sanfilippo, J. Azpiazu, G. Marafioti, A. A.
Transeth, Ø. Stavdahl, and P. Liljebäck,
“Perception-driven obstacle-aided locomotion

for snake robots: the state of the art, challenges
and possibilities,” Applied Sciences, vol. 7, no. 4,
p. 336, 2017.

[3] M. Quigley, K. Conley, B. Gerkey, J. Faust,
T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “ROS:
an open-source robot operating system,” in Proc. of
the IEEE International Conference on Robotics and
Automation (ICRA), workshop on open source soft-
ware, vol. 3, p. 5, 2009.

[4] N. Koenig and A. Howard, “Design and use
paradigms for gazebo, an open-source multi-robot
simulator,” in Proc. of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), vol. 3, pp. 2149–2154, 2004.

[5] J. Won, K. DeLaurentis, and C. Mavroidis, “Rapid
prototyping of robotic systems,” in Proc. of the
IEEE International Conference on Robotics and Au-
tomation (ICRA), vol. 4, pp. 3077–3082, 2000.

[6] H. R. Kam, S.-H. Lee, T. Park, and C.-H. Kim,
“Rviz: a toolkit for real domain data visualization,”
Telecommunication Systems, vol. 60, no. 2, pp. 337–
345, 2015.

[7] Open Source Robotics Foundation, “Tutorial: Us-
ing a URDF in Gazebo,” May 2016.

[8] Open Source Robotics Foundation, “Tutorial: Us-
ing Gazebo plugins with ROS,” May 2016.

[9] F. Sanfilippo, Ø. Stavdahl, G. Marafioti, A. A.
Transeth, and P. Liljebäck, “Virtual functional seg-
mentation of snake robots for perception-driven
obstacle-aided locomotion,” in Proc. of the IEEE
Conference on Robotics and Biomimetics (ROBIO),
Qingdao, China, pp. 1845–1851, 2016.

[10] P. Liljebäck, Ø. Stavdahl, K. Pettersen, and J. Grav-
dahl, “Mamba - A waterproof snake robot with tac-
tile sensing,” in Proc. of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), pp. 294–301, Sept. 2014.


