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Abstract— This paper introduces JOpenShowVar, a Java
open-source cross-platform communication interface toKuka
robots that allows for reading and writing variables and data
structures of the controlled manipulators. This interface, which
is compatible with all Kuka robots that useKR C4 and previous
versions, runs as a client on a remote computer connected
with the Kuka controller via TCP/IP. JOpenShowVar opens
up to a variety of possible applications making it possible to
use different input devices, sensors and to develop alternative
control methods.

To show the potential of the proposed interface, two case
studies are presented. In the first one,JOpenShowVar is used
to control a Kuka KR 6 R900 SIXX (KR AGILUS) robot with
an Android mobile device. In the second case study, the same
manipulator is controlled with a Leap Motion Controller that
supports hand and finger motions as input without requiring
contact or touching. Related simulations are carried out to
validate efficiency and flexibility of the proposed communication
interface.

Index Terms— Robot interface, Manipulator, Control system.

I. INTRODUCTION

As far as robotics is concerned, very few industrial manip-
ulators with an open control interface have been released. Re-
stricting the focus toKuka robots [1], the standard program-
ming language is theKuka Robot Language(KRL) [2]. This
language is text based and offers the possibility of declaring
data types, specifying simple motions, and interacting with
tools and sensors via I/O operations. A KRL program can
only run on theKUKA Robot Controller(KRC), where it is
executed according to real-time constraints. While the KRL
offers an easy to use interface for industrial applications, it is
very limited when it comes to research purposes [3], [4]. In
particular, the KRL is tailored to the underlying controller
and, as a consequence, it only offers a fixed, controller-
specific set of instructions [5]. The KRL does not support
advanced mathematical tools such as matrix operations, opti-
misation or filtering methods, thus making it very difficult to

∗This work is partly supported by the Research Council of Norway
through the Centres of Excellence funding scheme, project number 223254
and the Innovation Programme for Maritime Activities and Offshore Oper-
ations, project number 217768

implement novel control approaches. There is no mechanism
for including third party libraries. Due to this design, it is
very difficult to extend the KRL with new instructions and
functionalities. Moreover, no external input devices can be
directly used. The standard workaround for partially expand-
ing the robot’s capabilities consists of using supplementary
software packages provided byKuka. Some examples of such
packages are theKUKA.RobotSensorInterface[1], which
makes it possible to influence the manipulator motion or
program execution via sensor data, or theKUKA.Ethernet
KRL XML [1], a module that allows the robot controller
to be connected with up to nine external systems (e.g.
sensors). However, these supplementary software packages
have several drawbacks such as limited I/O, a narrow set of
functions and often require major capital investments.

To overcome these problems, this paper presentsJOpen-
ShowVar, a Java open-source cross-platform communication
interface that makes it possible to read and write all of the
controlled manipulator variables, allowing researchers to use
different input devices, sensors and to develop alternative
control methods. This interface is compatible with allKuka
robots that useKR C4 or previous versions.JOpenShow-
Var works as amiddlewarebetween the user program and
the KRL. JOpenShowVaris an open-source project and it
is available on the Internet athttps://github.com/
aauc-mechlab/jopenshowvar, along with several de-
tailed class diagrams, documentation and demo videos.

The paper is organised as follows. A review of the related
research work is given in Section II. In Section III, we
focus on the description of theJOpenShowVararchitecture,
analysing the communication protocol and possible control
approaches. In Section IV two case studies are presented.
In the first case study,JOpenShowVaris used to control a
Kuka KR 6 R900 SIXX (KR AGILUS)robot with anAndroid
[6] mobile application. In the second case study, the same
manipulator is controlled with aLeap Motion Controller
[7] that supports hand and finger motions as input without
requiring contact or touching. Concerning the latter case
study, related simulations and results are shown in Section
V. In Section VI, conclusions and future works are outlined.



II. RELATED RESEARCHWORK

Several research groups have investigated the possibil-
ity of creating a software interface to theKuka industrial
robots. In [3], OpenKC, an open-source real-time control
software for theKuka lightweightrobot was presented. This
software allows the external triggering and control of all
the robot features by using a simple set of routines that
can easily be integrated in existing software. This enables
developers of robot applications to find solutions for a
variety of different software scenarios. However, this software
interface is restricted to a specific model ofKuka robots,
the Kuka lightweightmanipulator, and requires the use of
the KUKA.RobotSensorInterfacepackage. In [8], theKuka
Control Toolbox(KCT), a collection ofMATLAB functions
for motion control ofKuka robots was introduced to offer an
intuitive and high-level programming interface for the user.
This toolbox is compatible with all six degrees of freedom
(DOFs) small and low-payloadKuka robots. In detail, a
multi-thread server runs on the KRC and communicates
via KUKA.Ethernet KRL XMLwith a client that manages
the information exchange with the manipulator. This com-
munication scheme guarantees high transmission rates, thus
enabling real-time control applications. Nonetheless, asin the
previous work, this approach is still tailored to the underlying
controller and requires the use of theKUKA.Ethernet KRL
XML package.

Other researchers have tried a different approach aimed at
the disclosure of internal control architecture of theKuka
industrial manipulators. In [5], for instance, the reverse
engineering of KRL was investigated and a set of Java-based
Robotics APIswere presented for programming industrial
robots on top of a general-purpose language. TheRobotics
APIs implement robot commands like motions and access
to I/O calls. However, theRobotics APIsset presents some
safety limitations because it is the result of a reverse engi-
neering approach and it does not include a way of specifying
complex triggers like it is possible in KRL.

Recently,Kuka has shown more interest in the research
and education market. In particular, theKUKA youBot, a
mobile manipulator platform with open interfaces that include
several open-source software modules has been released
[9]. However, even though, theKUKA youBotrobot is the
only manipulator fromKuka with such an open interface, it
has several constraints concerning the limited payload and
dimensions that make it more suitable for educational use
rather than for industrial applications.

To the best of our knowledge, a cross-platform communi-
cation interface that works with allKuka robots has not been
released yet.

III. JOpenShowVarARCHITECTURE

In this section, the authors refer to several specific func-
tions, variables and configurations related to the KRL and the
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Fig. 1: The proposed architecture forJOpenShowVar: a
client-server model is adopted.

KRC. For a deeper understanding the reader can refer to [2].
The proposed control system architecture is shown in Fig. 1.
It is a client-server architecture withJOpenShowVarrunning
as a client on a remote computer andKUKAVARPROXYact-
ing as a server on the KRC.JOpenShowVarlocally interacts
with the user program and remotely communicates with the
KUKAVARPROXYserver viaTCP/IP.

In particular,KUKAVARPROXYis a multi-client server that
is written in Visual Basic 6.0 and can serve up to 10 clients
simultaneously. It implements theKuka CrossCommclass.
The interface of this class allows for the interaction with the
real-time control process of the robot and makes it possibleto
perform several operations such as selection or cancellation
of a specific program, errors and faults detection, renaming
program files, saving programs, resetting I/O drivers, reading
variables and writing variables.KUKAVARPROXYimple-
ments the reading and writing methods. All the variables that
need to be accessed by these methods have to be declared
as global variables in the predefined global system data list
$CONFIG.DAT. All kinds of variables can be declared in
this file from basic types such as INT, BOOL and REAL to
more complex structures like E6POS and E6AXIS that allow
for storing the robot configuration. Moreover, several system
variables can be accessed provided there are no restrictions
due to the type of data such as for $PROIP, $POSACT,
$AXIS ACT or $AXIS INC. For example, The current robot
position cannot be written but only read. Restrictions of this
nature are checked by the controller. However, it should be
noted that theKuka CrossCommclass does not provide a
real-time access to the robot’s data. In fact, it takes a non-
deterministic time to access a specific variable. SinceKuka
does not offer any kind of documentation on this topic,
several experimental tests were performed at our laboratory
in order to asses this time interval. According to our ex-
periments, reported in Section V, the average access time is
about 5 ms. Moreover, this time interval is not affected by
the kind of access to be performed (whether it is a reading
or a writing operation) or by the length of the message.
For these reasons, it is advantageous to aggregate several
variables in logical structures when reading or writing data.
By using structures of data it is possible to simultaneously
access several variables thereby minimising the access time.
The only limitation to this approach is on the length of the
logical structures that cannot exceed 255 bytes.

JOpenShowVaris a client written in Java, thus making



TABLE I: Reading variables

Field Description
00 message ID
09 length of the next segment
0 type of desired function
07 length of the next segment
$OV PRO Variable to be read

TABLE II: Writing variables

Field Description
00 message ID
0b length of the next segment
1 type of desired function
09 length of the next segment
$OV PRO Variable to be written
50 value to be written

cross-platform support possible. This client essentiallypro-
vides one method,sendRequest, that allows for both reading
and writing variables. The return type of thesendRequest
method is aCallback instance containing the updated value.

A. Communication protocol

The communication protocol relies on the TCP/IP pro-
tocol. In particular, on top of the TCP/IP layer, specially
formatted text strings are used for message exchanges.
KUKAVARPROXYactively listens on TCP port 7000. Once
the connection is established, the server is ready to receive
any reading or writing request from the client.

In order to access a variable, the client must specify two
parameters in the message: the desired type of function and
the variable name. To read a specific variable, the type
of function must be identified by the character “0”. For
instance, if the variable to be read is the system variable
$OV PRO, which is used to override the speed of the robot,
the message that the client has to send to the server will
have the format shown in Table I. In detail, the first two
characters of this string specify the message identifier (ID)
with a progressive integer number between 00 and 99. The
answer from the server will contain the same ID so that it
is always possible to associate the corresponding answer to
each request even if the feedback from the server is delayed.
The two successive reading message characters specify the
length of the next segment in hexadecimal units. In this
specific case, 09 accounts for one character specifying the
function type, two characters indicating the length of the next
segment and seven characters for the variable length. The
fifth character 0 in the message represents the type of the
desired function - reading, in this case. Subsequently, there
are two more characters indicating the variable length (in
hexadecimal units) and finally the variable itself is contained
in the last section of the message.

To write a specific variable, three parameters must be
specified: the type of function, the name of the desired
variable and the value to be assigned. The writing function
is specified by the character “1”. For instance, if the variable

to be written is the system variable $OVPRO with a value
of 50 (50% override speed), the message that the client has
to send to the server will have the format shown in Table II.

B. Control approach

JOpenShowVaropens up to a variety of possible appli-
cations making it possible to use different input devices
and to develop alternative control methods. In particular,the
proposed interface provides the possibility of implementing
either a position or a velocity control approach. The user
experience is substantially different in each case. When using
the position control mode, the operator simply controls the
position of the robot’s end-effector with constant velocity;
when operating in velocity control mode, the operator also
sets the velocity of the robot tool. In the first case, when the
operator releases the input device, the end-effector moves
back to its starting point, while in the second scenario, the
arm just stops moving but it keeps the last given position.

To control the robot motion according to the desired op-
erational scenario,JOpenShowVarallows researchers to use
the standard kinematics provided with the KRC. However, it
is also possible to implement alternative control algorithms
according to current needs as shown in Fig. 2-a and in Fig. 2-
b respectively. It should be noted that KRL does not provide
a native way to obtain velocity control. When using the KRC
kinematics, this limitation can be overcome by expressing the
target position as:

xt = xd, (1)

if operating in position control mode, or by:

xt = xa+ ẋd∆t, (2)

if operating in velocity control mode, where∆t is the
time interval between two successive iterations. Alternatively,
when a custom control algorithm is needed, the target joint
configuration is given by:

θt = θd, (3)

if operating in position control mode, or by:

θt = θa+ θ̇d∆t, (4)

if operating in velocity control mode.
When the operator manoeuvres the manipulator, a vector

signal with no semantic,s, is sent from the input device
to the user program. Here, according to the operational
scenario, the vector signal is interpreted as the target position
xt . If the intent is to use the standard kinematics provided
with the KRC, the user program simply works as a driver
for the input device and uses thesendRequestmethod of
JOpenShowVarto forward xt to a KRL program where
the standard KRC kinematics is used to calculate the joint
anglesθd. Alternatively, a custom control algorithm can be
implemented within the user program to calculate the joint
values for the robot according toxt . Essentially, the custom
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Fig. 2: (a) the user program utilisesJOpenShowVarto set the desired end-effector position and then the robot joints are
calculated by the KRC using the standard kinematic model, (b) a custom control algorithm can be implemented by the user
to calculate the joint values for the robot and then send these angles to the KRC to be actuated.

control method has to implement classic inverse kinematic
functions that can be generalised as follows:

θd = f−1
p (xd), (5)

concerning position control, and

θ̇d = f−1
v (θa, ẋd), (6)

for velocity control, whereθa is the the actual joint angles
vector. These values are then forwarded to a KRL program
where the standard KRC functions are used to actuate the
robot.

Note that the possibility of implementing certain control
features does not influence the design for the presented
interface. Instead,JOpenShowVarextends the functionalities
of the KRL language.

IV. CASE STUDIES

A. Case study 1: controlling the Kuka KR 6 R900 SIXX
manipulator with an Android mobile device

To show the potential of the presented interface in con-
trolling a Kuka robot from an alternative input device, as a
first case study,JOpenShowVaris used to control aKuka KR
6 R900 SIXXmanipulator with anAndroid mobile device.
The Kuka KR 6 R900 SIXX, shown in Fig. 3-a, is a 6 DOFs
robotic arm with a slim design and a small footprint.

According to the operational scenario, anAndroid mobile
application whose Graphic User Interface (GUI) is shown
in Fig. 3-b, is used to set the target positionxt . By using
the sendRequestmethod of JOpenShowVarthis vector is
forwarded to theKUKAVARPROXYand stored as a global
value in a data structure. Finally, a KRL actuator program
iteratively retrieves the new global data and uses the KRC
kinematics to actuate the robot. The code of the KRL actuator
program is shown in Algorithm 1. ForKuka robots, the idle
time between motions can be shortened by executing the

Fig. 3: (a) TheKuka KR 6 R900 SIXXmanipulator, (b) the
GUI of the Android mobile application used to control the
arm.

DEF ACTUATOR()
INI
PTP HOME Vel = 100 % DEFAULT
$ADVANCE=1
LOOP
PTP_REL MYPOS C_PTP

ENDLOOP
PTP HOME Vel = 100 % DEFAULT

END

Algorithm 1: KRL actuator program for the case study 1

time-consuming arithmetic and logic instructions between
motion commands while the robot is moving, i.e. processing
them during the advance run (the instructions “run” in ad-
vance of the motion). Using the system variable $ADVANCE,
it is possible to define the maximum number of motion blocks
the advance run may process ahead of the main run (the
motion block currently being executed). Since the main loop
of the Server program consists of only one instruction, the
system variable $ADVANCE is initially set to 1 in order to
avoid the unwanted execution of the same line of code. Inside
the main loop, a relative movement is iteratively executed to
the global variable MYPOS, which is the one that stores the
target position. The key word CPTP is used to approximate



Fig. 4: TheLeap Motion Controllerused to operate theKuka
KR 6 R900 SIXXmanipulator.

the movement. The approximate positioning instruction is
executed in a time-optimised manner in the sense that there
is always at least one axis moving with the programmed
acceleration or velocity limits. The system simultaneously
ensures that the permissible gear and motor torques for each
axis are not exceeded. Furthermore, the higher motion profile,
set by default, ensures motion that is optimised in terms of
velocity and acceleration.

B. Case study 2: controlling the Kuka KR 6 R900 SIXX
manipulator with a Leap Motion Controller

As a second case study,JOpenShowVaris used to control
the same robot (from the first case study) with a custom
control algorithm. This is done to highlight the potential of
the presented interface in developing alternative controlmeth-
ods that do not use the standard kinematic model provided
by Kuka. Moreover, aLeap Motion Controller[7], shown
in Fig. 4, is used as alternative input device to control the
robot. TheLeap Motion Controlleris a small USB input
device that supports hand and finger motions as input without
requiring contact or touching. This controller is designed
to be placed on a physical desktop, facing upwards. Using
two monochromatic infra-red (IR) cameras and three IR
light-emitting diodes (LEDs), the device observes a roughly
hemispherical area, to a distance of about 1 meter. The LEDs
generate a 3D pattern of dots of IR light and the cameras
generate almost 300 frames per second of reflected data,
which is then sent through a USB cable to the host computer,
where it is analysed by theLeap Motion Controllersoftware
and can be retrieved using theLeap Motion APIs. While
the Leap Motion Controllermakes it possible to control
all the joints of human hands, in this specific case study,
only the DOFs of the wrist are used as an input signal
to control the robot’s end-effector. Each DOF of the wrist
corresponds to a translational axis in the workspace of the
robot to be controlled. When operating in position control
mode, the input device works as a position proportional
replica so that the wrist motion maps exactly to the motion
of the robot’s end-effector with constant speed, while, when
operating in velocity control mode, a movement of the wrist
in a particular direction will produce a translational motion
in the same direction at a velocity proportional to the wrist

DEF EXT_MOVE_AXIS()
DECL AXIS LOCAL
INI
PTP HOME Vel = 100 % DEFAULT
$ADVANCE=1
LOCAL.A1 = $AXIS_ACT.A1
...
LOCAL.A6 = $AXIS_ACT.A6
LOOP
LOCAL.A1 = LOCAL.A1 + MYAXIS.A1
...
LOCAL.A6 = LOCAL.A6 + MYAXIS.A6
PTP LOCAL C_PTP

ENDLOOP
PTP HOME Vel = 100 % DEFAULT

END

Algorithm 2: KRL actuator program for the case study 2

displacement. For better control interface usability, a small
spherical imaginary volume with a diameter of about 8 cm
is defined in the centre of the controller monitoring space.
As long as the operator’s wrist is located within this volume,
the robot’s end-effector does not move.

The user program runs on a remote computer and uses the
Leap Motion APIsto retrieve the target positionxt according
to the operational scenario. By using thesendRequestmethod
of JOpenShowVar, the actual joint anglesθa are received.
This data is used as input for the custom control algorithm.
In this specific case study, the classical kinematic functions
and the Jacobian method [10] are used to implement (5)
and (6). Then, by using thesendRequestmethod ofJOpen-
ShowVarthe target joint configurationθt is forwarded to the
KUKAVARPROXYand stored as global value in a structure.
Finally, a KRL actuator program iteratively retrieves the new
global data and actuates the robot.

The code of the KRL actuator program is shown in
Algorithm 2. It should be noted that the variable MYAXIS is
initialised to default values inside the INI fold. The system
variable $ADVANCE is initially set to 1. Then the current
joint values are assigned to a local structure variable named
LOCAL. Inside the main loop, the desired joint angles are
iteratively assigned to LOCAL, axis by axis. Finally a PTP
movement with CPTP approximation is executed.

V. SIMULATIONS AND EXPERIMENTAL RESULTS

Related simulations are carried out in order to test the
proposed communication interface within the particular case
study of theLeap Motion Controller. A real-time trajectory
tracking analysis of the Cartesian paths for X, Y and Z
coordinates is performed, measuring the difference between
the desired and actual position of the robot’s end-effector.
The results are shown in Fig. 5.

Moreover, to show the responsiveness ofJOpenShowVar,
a time-delay analysis is carried out for the same Cartesian
paths as shown in Fig. 6. Even though there are few spikes
with a larger time interval, an average access time of 4.27
ms is obtained in this case. The interface provided by
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Fig. 5: Trajectory tracking for (a) theX coordinate, (b) the
Y coordinate and (c) theZ coordinate.

JOpenShowVardemonstrates a fast reaction to the inputs
and reasonable output error, considering the dimension of
the controlled model.

VI. CONCLUSION AND FUTURE WORK

This paper highlights the features ofJOpenShowVaras a
cross-platform communication interface toKukarobots. Even
thoughJOpenShowVaronly provides a soft real-time access
to the manipulator to be controlled, thismiddlewarepackage
opens up to a variety of possible applications making it
feasible to use different input devices, sensors and to develop
alternative control methods.

In the future, different control algorithms such as the
ones implemented in [11], [12] and [13] may be tested as
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Fig. 6: Time-delay analysis for the corresponding Cartesian
paths shown in Fig. 5.

alternatives to the standard KRC. Finally, some effort should
be put in the standardisation process ofJOpenShowVarto
make it even more reliable for both the industrial and
the academic practice. In the author’s opinion, the key to
maximising the long-term, macroeconomic benefits for the
robotics industry and for academic robotics research relies
on the closely integrated development of open content, open
standards, and open source.
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