
Controlling Kuka Industrial Robots:
Flexible Communication Interface JOpenShowVar

F. Sanfilippo, L. I. Hatledal and H. Zhang
Department of Maritime Technology and
Operations, Aalesund University College
Postboks 1517, 6025 Aalesund, Norway

{fisa, laht, hozh}@hials.no

M. Fago
IMTS S.r.L. Company

Taranto, Italy
massimiliano.fago@gmail.com

K. Y. Pettersen
Department of Engineering

Cybernetics, Norwegian University of
Science and Technology

7491 Trondheim, Norway
kristin.y.pettersen@itk.ntnu.no

Abstract— JOpenShowVar is a Java open-source cross-

platform communication interface to Kuka industrial robots.

This novel interface allows for read-write use of the controlled

manipulator variables and data structures. JOpenShowVar,

which is compatible with all Kuka industrial robots that use

Kuka Robot Controller version 4 (KR C4) and Kuka Robot

Controller version 2 (KR C2), runs as a client on a remote

computer connected with the Kuka controller via Transmission

Control Protocol/Internet Protocol (TCP/IP). Even though only

soft real-time applications can be implemented, JOpenShowVar
opens up to a variety of possible applications, making both

the use of various input devices and sensors as well as the

development of alternative control methods possible.

Four case studies are presented to demonstrate the poten-

tial of JOpenShowVar. The first two case studies are open-

loop applications, while the last two case studies describe the

possibility of implementing closed-loop applications. In the first

case study, the proposed interface is used to make it possible for

an Android mobile device to control a Kuka KR 6 R900 SIXX
(KR AGILUS) manipulator. In the second case study, the same

Kuka robot is used to perform a two-dimensional line-following

task that can be used for applications like advanced welding

operations and similar. In the third case study, a closed-loop

application is developed to control the same manipulator with a

Leap Motion Controller that supports hand and finger motions as

input without requiring contact or touching. In the fourth case

study, a bidirectional closed-loop coupling is established between

a Force Dimension omega.7 haptic device and the same Kuka
manipulator. Related experiments are carried out to validate

the efficiency and flexibility of the proposed communication

interface.

Index Terms— Robot interface, Kuka industrial robots, input

device.

I. INTRODUCTION

Industries that employ robots in a wide variety of ap-
plications are the main customers for robot manufacturers.
The manipulator market for research applications, on the
other hand, is simply too small for the robot manufacturing
industry to develop models specifically for such use. While
the hardware and mechanical requirements of developed
robots are often similar for both industry and research,
scientific software requirements are quite different and even
contradictory in many aspects [1], [2]. The goal of scientists

JOpenShowVar
(Middleware)User Program KRL (Kuka Robots)

Fig. 1: The idea of realising a communication interface for
Kuka industrial robots that works as a middleware between
the user program and the Kuka Robot Language (KRL).

is to try to gain as much control over the robot as possible,
whereas industries seek safe and easy operational interfaces.
In particular, although software interfaces that are appropriate
for industrial use are available, it is difficult to find interfaces
that are applicable for research purposes. The disclosure of
the internal control architecture is also very hard to come
by. Many manufacturers are unwilling to publish internal
details regarding system architecture due to the high levels
of competition in the robot market. Consequently, it is not
possible to fully exploit many robotic platforms in a scientific
context.

Only a small number of industrial manipulators with an
open control interface has been released as far as robotics
is concerned. Focusing exclusively on Kuka industrial robots
[3], the Kuka Robot Language (KRL) is the standard pro-
gramming language [4]. It is a text based language that
offers data type declaration, specification of simple motions,
and interaction with tools and sensors via Input/Output (I/O)
operations. It is only possible to run KRL programs on the
Kuka Robot Controller (KRC), where program execution is
done in accordance with real-time constraints. While the
KRL offers an interface that is easy to use in industrial
applications, it is quite limited for research purposes. In
particular, the KRL is tailored to the underlying controller
and consequently, only a fixed, controller-specific set of
instructions is offered [5]. Advanced mathematical tools such
as matrix operations, optimisation or filtering methods are
not supported, thus making the implementation of novel
control approaches very difficult. There is no native way to
include third party libraries and as such, extending the KRL
to include new instructions and functionalities is an arduous
task. Moreover, it is not possible to directly use external input
devices. The standard workaround for partially expanding the
robot’s capabilities is to use supplementary software packages

provided by Kuka. Some examples of such packages are the
Kuka.RobotSensorInterface [6], which allows the manipulator
motion or program execution to be influenced by sensor
data, and the Kuka.Ethernet KRL XML [6], a module that
allows the connection of the robot controller with up to nine
external systems (e.g. sensors). However, several drawbacks
accompany these supplementary software packages: I/O is
limited, a narrow set of functions is present and major capital
investments are often required to actually purchase these
packages from Kuka.

To overcome these problems, JOpenShowVar was pre-
sented by our research group in [7]. JOpenShowVar is a Java
open-source cross-platform communication interface that al-
lows for reading and writing all the controlled manipulator
variables. Even though only soft real-time applications can
be implemented, this interface allows researchers to use
different input devices, sensors and to develop alternative
control methods. JOpenShowVar library is compatible with
all Kuka industrial robots that use KR C4 or KR C2. The
basic concept is shown in Fig. 1: JOpenShowVar works as a
middleware between the user program and the KRL. In this
work, more details about JOpenShowVar architecture are pro-
vided. Several new, more flexible and efficient, procedures are
introduced in the latest release of the library to replace the old
fundamental reading and writing method that is now marked
as deprecated. In addition to these new methods, some other
high-level functions are also provided to enable angles and
torques readings of the controlled manipulator. This feedback
signal is very important to improve the manipulator dexter-
ity and to achieve crucial functions like sensitive collision
detection and compliant control actions. Some guidelines for
allowing the user implementing new high-level procedures
are discussed. JOpenShowVar is an open-source project and
it is available on the Internet at https://github.com/
aauc-mechlab/jopenshowvar, along with several de-
tailed class diagrams, documentation and demo videos.

The paper is organised as follows. A review of the related
research work is given in Section II. In Section III, we focus
on the description of JOpenShowVar architecture, analysing
the communication protocol, possible control approaches
and some high-level methods. In Section IV, four case
studies are presented. The first two case studies are open-
loop applications, while the last two case study describe the
possibility of implementing closed-loop applications. In the
first case study, JOpenShowVar is used to control a Kuka KR
6 R900 SIXX (KR AGILUS) robot with an Android [8] mobile
application. In the second case study, the same Kuka robot is
used to perform a two-dimensional line-following task that
can be used for applications like advanced welding operations
and similar. In the third case study, the same manipulator
is controlled in a closed-loop mode with a Leap Motion
Controller [9] that supports hand and finger motions as input
without requiring contact or touching. Finally, in the fourth

TABLE I: Currently available interfaces for Kuka robots

Interface Support to
Kuka LBR

Support to Kuka
industrial robots

External
packages
required

OpenKC Yes No Yes
FRI Yes No No

KCT No Yes (only small
and low-payload) Yes

Robotics
APIs Yes Yes (safety

limitations) No

ROS Yes No No
KUKASunrise.Connec-
tivity Yes No Yes

case study, a bidirectional closed-loop coupling between a
Force Dimension omega.7 haptic device and the same Kuka
robot is established. A force feedback proportional to the
force that the robot’s end-effector is supporting is returned
by the haptic interface. Related experiments and results are
shown in Section V. In Section VI, conclusions and future
works are outlined.

II. RELATED RESEARCH WORK

The possibility of creating a software interface to Kuka
robots has been investigated by several research groups.
An open-source real-time control software for the Kuka
lightweight robot, OpenKC, was presented in [1]. This soft-
ware makes it possible to externally trigger and control all
of the features of the Kuka lightweight (LBR) manipulator.
This is done by using a simple set of routines that can
easily be integrated into existing software. As a result,
developers of robot applications have an edge in finding
solutions for a variety of different software scenarios. In
particular, force and torque readings as well as different
modes of operation can be remotely read and parametrised.
However, this software interface is restricted to a specific
model of Kuka robots, the Kuka lightweight manipulator, and
use of the Kuka.RobotSensorInterface package is required.
Another interface that is currently available for the Kuka
lightweight robots is the Fast Research Interface (FRI) [2].
The FRI provides direct low-level real-time access to the
KRC at high rates of up to 1 kHz. On the other hand,
all features, like teaching, motion script features, fieldbus
I/O and safety are provided. The FRI is based on the KR
C2. Without much installation efforts, access to different
controller interfaces of the Kuka system is provided including
joint position control, cartesian impedance control, and joint
position control. However, also this software interface is
restricted to a specific model of Kuka robots, the Kuka
lightweight manipulator. No support for the standard Kuka
industrial robots is provided.

Later on, the Kuka Control Toolbox (KCT), a collection
of MATLAB functions for motion control of Kuka industrial
robots, was introduced in [10] to offer an intuitive and
high-level programming interface for the user. This toolbox

is compatible with all small and low-payload Kuka robots
that have six degrees of freedom (DOFs). The KCT runs
on a remote computer connected to the KRC via TCP/IP.
A multi-thread server runs on the KRC and communicates
via Kuka.Ethernet KRL XML with a client whose job is
to manage the information exchange with the manipulator.
High transmission rates are guaranteed by this communi-
cation set-up, thus enabling real-time control applications.
Nonetheless, as in the previous work, this approach is still
tailored to the underlying controller and requires the use of
the Kuka.Ethernet KRL XML package.

A different approach has been tried by other researchers,
aimed at the disclosure of the Kuka industrial manipulator
internal control architecture. For instance, the reverse en-
gineering of the KRL was investigated in [5] and a set of
Java-based Robotics APIs was presented for programming
industrial robots on top of a general-purpose language. The
Robotics APIs implement robot commands like motions and
access to I/O calls. It was shown that KRL can be bridged
by batch-executing motions, under the assumption that ex-
ecuting control flow and calculation statements takes only
a small amount of time compared to the time it takes the
robot to complete a motion command. However, some safety
limitations are inherently present in the Robotics APIs set
because it is the result of a reverse engineering approach
and therefore does not include a way of specifying complex
triggers in contrast to the KRL.

In the last few years, the Robot Operating System (ROS)
[11], an open-source software toolbox for robotic devel-
opment, has become more and more popular among the
research community. The primary goal of ROS is to provide a
common platform to make the construction of capable robotic
applications quicker and easier. Some of the features it pro-
vides include hardware abstraction, device drivers, message-
passing and package management. ROS provides support
for different industrial robots including vendors like ABB,
Adept, Fanuc, Motoman and Universal Robots. Extensive
research work has also gone into creating ROS packages
for communicating with the Kuka lightweight robots but no
support is provided for the Kuka standard industrial robots
yet. One of the main reasons for this lack is the non-
disclosure of the KUKA Robot Controller (KRC) internal
architecture which currently makes it impossible to directly
interact with the robot to be controlled.

Recently, Kuka has shown more interest in the re-
search and education market. In particular, the KUKA Sun-
rise.Connectivity has been recently developed for Kuka
lightweight robots. This software provides a collection of
interfaces for influencing robot motion at various process
control levels. Third-party software can be easily integrated
into the user-specific application using the popular standard
programming language Java. Along with the quick update
of the target position directly from the robot application, it

KRCRemote Computer

KUKAVARPROXY

JopenShowVar

User Program
TCP/IP

Fig. 2: The proposed architecture for JOpenShowVar: a
client-server model is adopted.

is also possible to access the robot controller from external
computers in hard real-time mode. However, even in this last
case, the main limitation is that this software is restricted to
the Kuka lightweight manipulators.

To provide a more clear overview of the currently available
interfaces for Kuka robots, a table of comparison of all the
reviewed related works is shown in Table I.

To the best of our knowledge, a cross-platform commu-
nication interface that works with all Kuka industrial robots
without requiring any external packages has not been released
yet.

III. JOpenShowVar ARCHITECTURE

In this section, the authors initially describe the design
choices that characterise the proposed architecture. Succes-
sively, the architectural concept is presented, analysing the
communication protocol, possible control approaches and
some high-level methods.

The design of JOpenShowVar is based on the following
design choices:

• Low-cost: the developed architecture does not re-
quires any supplementary software packages provided
by Kuka such as the Kuka.RobotSensorInterface [6] or
the Kuka.Ethernet KRL XML [6]. Therefore, no major
capital investments are required to actually purchase
these packages from Kuka. This fact makes the proposed
solution very inexpensive;

• Flexibility: the system offers a virtually unlimited I/O
and the possibility of including third party libraries. This
allows for adding support for advanced mathematical
tools such as matrix operations, optimisation or filtering
methods, thus making it very simple to implement novel
control approaches;

• Reliability: the system is easy to maintain, modify and
expand by adding new components and features. In
addition the proposed interface is also open-source and
cross-platform;

• Integrability: the proposed system interface presents a
modular structure that can facilitate the integration with
ROS. Even though this integration is outside the scope
of this journal paper, it is considered as an important
future work which will surely improve the usefulness
of the proposed interface. The community of developers
at ROS is looking forward to the integration of JOpen-
ShowVar. The developers have confirmed the usefulness

of the proposed interface especially because there are
currently no other alternative offering similar features.

Hereafter, several specific functions, variables and config-
urations related to the KRL and the KRC are referred to
in order to introduce the architectural concept. For a more
detailed introduction to the KRL, the reader can refer to [4].
The proposed control system architecture is shown in Fig. 2.
It is a client-server architecture with JOpenShowVar running
as a client on a remote computer and KUKAVARPROXY act-
ing as a server on the KRC. JOpenShowVar locally interacts
with the user program and remotely communicates with the
KUKAVARPROXY server via TCP/IP.

In particular, KUKAVARPROXY is a multi-client server
that is written in Visual Basic 6.0 and can serve up to
10 clients simultaneously. KUKAVARPROXY implements the
Kuka CrossComm interface. This interface allows for the
interaction with the real-time control process of the robot
and makes it possible to perform several operations such as
selection or cancellation of a specific program, errors and
faults detection, renaming program files, saving programs,
resetting I/O drivers, reading variables and writing variables.
KUKAVARPROXY implements the reading and writing meth-
ods. All the variables that need to be accessed by these meth-
ods have to be declared as global variables in the predefined
global system data list $CONFIG.DAT. All kinds of variables
can be declared in this file from basic types such as INT,
BOOL and REAL to more complex structures like E6POS
and E6AXIS that allow for storing the robot configuration.
Moreover, several system variables can be accessed provided
there are no restrictions due to the type of data such as
for $PRO IP, $POS ACT, $AXIS ACT or $AXIS INC. For
example, the current robot position, $POS ACT, cannot be
written but only read. Restrictions of this nature are checked
by the controller.

As already mentioned, the interface of the Kuka Cross-
Comm class allows for the interaction with the real-time
control process of the robot to be controlled. However,
it should be noted that the Kuka CrossComm class can
only be remotely accessed via TCP/IP. Unfortunately, the
TCP/IP communication introduces inevitable delays, there-
fore JOpenShowVar cannot provide a real-time access to
the robot’s data. Only soft real-time applications can be
realised. In fact, it takes a non-deterministic time to access
a specific variable. Since Kuka does not offer any kind
of documentation on this topic, several experimental tests
were performed at our laboratory to asses this time interval.
According to our experiments, reported in Section V, the
average access time is about 5 ms. Moreover, this time
interval is not affected by the kind of access to be performed
(whether it is a reading or a writing operation) or by the
length of the message. For these reasons, it is advantageous to
aggregate several variables in logical structures when reading
or writing data. By using data structures it is possible to

readVariable
writeVariable

KRC

KUKAVARPROXY

sendRequest
@Deprecated

KRC
Kinematics

KRL Actuator Program

Custom
Kinematics

High Level
Functions

Kuka Robot
Controller

Kuka-
Dependent
Functions

Network

JOpenShowVar
CrossComClient

Application
High-level
functions

Application Code

Control
Methods

Terminal GUI

Fig. 3: The architectural levels of JOpenShowVar.

simultaneously access several variables, thereby minimising
the access time. The only limitation to this approach is on
the length of the logical structures that cannot exceed 255
bytes.

JOpenShowVar provides a client, CrossComClient, which
is written in Java, thus making cross-platform support possi-
ble. The architectural details of the JOpenShowVar library
are shown in Fig. 3. As presented in our previous work
[7], the client initially provided only one low level method,
sendRequest. This method allows for both reading and writ-
ing variables. The sendRequest method returns a Callback
instance containing the updated value. However, in the latest
release of JOpenShowVar, starting from version v0.2, the
sendRequest is marked as a deprecated method, since two
new more flexible and efficient methods are introduced:
readVariable and writeVariable.

On top of the JOpenShowVar’s methods that implement the
low level communication protocol, another logic layer can be
added by the user developer allowing for the possibility of
implementing alternative control methods (custom kinemat-
ics) as well as some higher level functions. The application
code can run on top of this hierarchical architecture. In
addition a graphical user interface (GUI) and a terminal are
provided with JOpenShowVar to allow the user for monitor-
ing the robot’s state, visualising and manually setting all the
desired variables. It should be noted that the GUI still uses the
sendRequest method of JOpenShowVar for a practical reason,
since this old method does not require any knowledge on the
internal structure of the variables to be accessed compared to
the new methods. The low-level communication protocol, a
detailed reference explanation of the newly released methods,
the possibility of implementing custom control functions, as
well as some guidelines to develop high-level procedures will

TABLE II: Reading variables

Field Description
00 message ID
09 length of the next segment
0 type of desired function
07 length of the next segment
$OV PRO Variable to be read

TABLE III: Writing variables

Field Description
00 message ID
0b length of the next segment
1 type of desired function
09 length of the next segment
$OV PRO Variable to be written
50 value to be written

be discussed later in this section.

A. Communication protocol

The communication protocol relies on the TCP/IP pro-
tocol. In particular, on top of the TCP/IP layer, specially
formatted text strings are used for message exchanges.
KUKAVARPROXY actively listens on TCP port 7000. Once
the connection is established, the server is ready to receive
any reading or writing request from the client.

Reading variables: To access a variable, the client must
specify two parameters in the message: the desired type of
function and the variable name. To read a specific variable,
the type of function must be identified by the character “0”.
For instance, if the variable to be read is the system variable
$OV PRO, which is used to override the speed of the robot,
the message that the client has to send to the server will
have the format shown in Table II. In detail, the first two
characters of this string specify the message identifier (ID)
with a progressive integer number between 00 and 99. The
answer from the server will contain the same ID so that
it is always possible to associate the corresponding answer
to each request even if the feedback from the server is
delayed. The next two characters in the string specify the
length of the next segment in hexadecimal units. In this
specific case, 09 accounts for one character specifying the
function type, two characters indicating the length of the next
segment and seven characters for the variable length. The fifth
character 0 in the message represents the type of the desired
function, which in this case is reading. Subsequently, there
are two more characters indicating the variable length (in
hexadecimal units) and finally the variable itself is contained
in the last section of the message.

Writing variables: To write a specific variable, three pa-
rameters must be specified: the type of function, the name of
the desired variable and the value to be assigned. The writing
function is specified by the character “1”. For instance, if the
variable to be written is the system variable $OV PRO with

a value of 50 (50% override speed), the message that the
client has to send to the server will have the format shown
in Table III.

B. Variables, structures and methods

From the release version v0.2 of JOpenShowVar, several
new classes have been added to the library to improve the
usability. In particular, two abstract classes, KRLVariable and
KRLStruct (which extends KRLVariable), are provided to
allow the user to implement any KRL variable or structure,
respectively. In this way, it is possible to create and maintain
a local instance of all the desired variables and structures
on the client side. Based on these two abstract classes, the
most commonly used KRL variables and structures have
been implemented. Any other KRL variable or structure that
is not included in JOpenShowVar library yet can be easily
implemented by the user.

Since the release version v0.2 of JOpenShowVar, the
sendRequest is marked as a deprecated method. To replace
this old method, two new, more reliable methods, are added
to the CrossComClient:

• the readVariable method allows for reading any desired
remote variable or structure from the controlled robot
and store it locally. An exception is thrown if an error
in the communication protocol occurs;

• the writeVariable method allows for updating any de-
sired remote variable or structure of the controlled robot
with the value of the corresponding local variable or
structure, respectively. An exception is thrown if an error
in the communication protocol occurs.

The deprecated sendRequest method is being kept as part
of the JOpenShowVar library simply because the GUI still
uses it for a practical reason. In fact, this old method does
not require any knowledge on the internal structure of the
variables to be accessed compared to the newly introduced
methods. Moreover, it should be noted that the new method
writeVariable cannot handle arrays; this can only be done
by using the old sendRequest method. In the Algorithm 1
sketch box, a possible use-case example is shown to highlight
the differences between the new methods and the deprecated
sendRequest method.

C. Control methods

JOpenShowVar opens up to a variety of possible appli-
cations making it possible to use different input devices
and to develop alternative control methods. In particular, the
proposed interface provides the possibility of implementing
either a position or a velocity control approach. The user
experience is substantially different in each case. When using
the position control mode, the operator simply controls the
position of the robot’s end-effector with constant velocity;
when operating in velocity control mode, the operator also
sets the velocity of the robot tool. In the first case, when the

Remote Computer
User Program JOpenShowVar

CrossComClient

writeVariable

Input Driver

KRC

KUKAVARPROXY

TCP/IP

Input Device
KRL

Actuator
Program

xts

xt xt

θtKRC
kinem
atics

(a)

Remote Computer
User Program JOpenShowVar

CrossComClient

writeVariable

Control Algorithm
(kinematics)

KRC

KUKAVARPROXY

TCP/IP

Input Device KRL Actuator
Program

θt

θa

θt

θa

θt

θa

xts

readVariable

(b)

Fig. 4: (a) The user program utilises JOpenShowVar to set the desired end-effector position and then the robot joints are
calculated by the KRC using the standard kinematic model, (b) a custom control algorithm can be implemented by the user
to calculate the joint values for the robot and then send these angles to the KRC to be actuated.

try (CrossComClient client = new CrossComClient("
robotIPaddress", 7000)) {

//JOpenShowVar v0.1 reading
Callback readRequest = client.sendRequest(new

Request(0, "$OV_JOG"));
System.out.println(readRequest);
//JOpenShowVar v0.1 writing
Callback writeRequest = client.sendRequest(new

Request(1, "$OV_JOG", "100"));
System.out.println(writeRequest);
//JOpenShowVar v0.2 reading
KRLReal jog = KRLVariable.OV_JOG();
client.readVariable(jog);
System.out.println(jog);
//JOpenShowVar v0.2 writing
jog.setValue(10);
client.writeVariable(jog);
System.out.println(jog);}

Algorithm 1: A use-case example that highlights the
differences between the new methods and the deprecated
sendRequest method.

operator releases the input device, the end-effector moves
back to its starting point, while in the second scenario, the
arm just stops moving but it keeps the last given position.

To control the robot motion according to the desired op-
erational scenario, JOpenShowVar allows researchers to use
the standard kinematics provided with the KRC. However, it
is also possible to implement alternative control algorithms
according to current needs. This is illustrated in Fig. 4-a and
in Fig. 4-b, respectively. It should be noted that the KRL does
not provide a native way to obtain velocity control. When
using the KRC kinematics, this limitation can be overcome
by expressing the target position as:

xt = xd , (1)

if operating in position control mode, or by:

xt = xa + ˙xdDt, (2)

if operating in velocity control mode, where Dt is the esti-
mated time interval between two successive iterations. As al-
ready mentioned, JOpenShowVar cannot provide a real-time
access to the robot’s data. Only soft real-time applications
can be realised. It takes a non-deterministic time to access a
specific variable. According to our experiments, reported in
Section V, the average access time is about 5 ms. Therefore
Dt can be approximated to a slightly bigger factor of the
the average access time. To achieve better performance, the
average access time should be continuously monitored and
updated. Perhaps, this may be a price to high to pay for some
applications with real-time requirements but JOpenShowVar
still provides great advantages in terms of flexibility.

Alternatively, when a custom control algorithm is needed,
the target joint configuration is given by:

qt = qd , (3)

if operating in position control mode, or by:

qt = qa + ˙qdDt, (4)

if operating in velocity control mode.
When the operator manoeuvres the manipulator, a vector

signal with no semantic, s, is sent from the input device
to the user program. Here, according to the operational
scenario, the vector signal is interpreted as the target position
xt . If the intent is to use the standard kinematics provided
with the KRC, the user program simply works as a driver
for the input device and uses the writeVariable method of
JOpenShowVar to forward xt to a KRL program where
the standard KRC kinematics is used to calculate the joint
angles qd . Alternatively, a custom control algorithm can be

implemented within the user program to calculate the joint
values for the robot according to xt . Essentially, the custom
control method has to implement classic inverse kinematic
functions that can be generalised as follows:

qd = f�1
p (xd), (5)

concerning position control, and

˙qd = f�1
v (qa, ˙xd), (6)

for velocity control, where qa is the the actual joint angles
vector that can be retrieved by using the readVariable method
of JOpenShowVar. These values are then forwarded to a
KRL program where the standard KRC functions are used
to actuate the robot.

Note that the possibility of implementing certain control
features does not influence the design for the presented
interface. Instead, JOpenShowVar extends the functionalities
of the KRL language.

D. Additional functions

To simplify the low level communication protocol and
improve reliability, some additional methods are provided
with the CrossComClient class:

• the simpleRead and the simpleWrite methods are simpler
versions of the sendRequest function. In particular, these
methods do not execute any data parsing as opposed to
the sendRequest method. They allow for an easier and
faster access, as shown in the Algorithm 2 sketch box.
The two new methods return a raw string without parsing
the information. The aim of these two new methods is
to provide an easy way to monitor the status of the robot
making it possible to print the raw information returned
from the KRC;

• the readJointAngles method uses the readVariable
method retrieve the actual joint angles vector, qa, of the
controlled robot, all at once;

• the readJointTorques method allows for monitoring the
load of each joint actuator by retrieving the current
torque of each axis of the arm, all at once. In particular,
readJointTorques retrieves the global KRL array variable
$TORQUE AXIS ACT and returns the current torque of
each axis. This feedback signal is very important in order
to improve manipulator dexterity and to achieve crucial
functions like sensitive collision detection and compliant
control actions. In the Algorithm 3 sketch box, a possible
use-case is shown.

In addition to these methods, some other high-level func-
tions can be implemented by the user on top of the JOpen-
ShowVar communication protocol. The implementation of
some other possible high-level applications is included as a
technical document in the public repository of JOpenShow-
Var.

try (CrossComClient client = new CrossComClient("
robotIPaddress", 7000)) {

System.out.println(client.simpleRead("$OV_JOG"));
System.out.println(client.simpleWrite("$OV_JOG",

"90"));}

Algorithm 2: Use-case for the new simpleRead and
simpleWrite methods.
try (CrossComClient client = new CrossComClient("

robotIPaddress", 7000)) {
double[] torques = client.readJointTorques();}

Algorithm 3: Reading the actual torque for each axis, Java
side.

E. Terminal and Graphical user interface
Another useful tool that comes with JOpenShowVar is a

console terminal that provides read-write text-based access
to the robot’s data. It is particularly useful for system
administration and debugging purposes. To read a variable,
it is sufficient to type the name of the desired variable and
press enter. From an implementation point of view, it uses the
new simpleRead and simpleWrite methods. Fig. 5-a shows a
simple use-case.

Besides, JOpenShowVar also offers a useful GUI that can
be used to monitor the robot’s state, visualise and manually
set variables. A screen shot of this convenient tool is shown
in Fig. 5-b. This interface is very intuitive for the user.

IV. CASE STUDIES

In this section, four case studies are presented to demon-
strate the potential of JOpenShowVar. The first two case
studies are open-loop applications, while the last two case
studies describe the possibility of implementing closed-loop
applications.

A. Case study 1: controlling the Kuka KR 6 R900 SIXX
manipulator with an Android mobile device

To show the potential of the presented interface in control-
ling a Kuka industrial robot from an alternative input device,
as a first case study, JOpenShowVar is used to control a
Kuka KR 6 R900 SIXX manipulator with an Android mobile
device. In this case, an open-loop application is implemented
by using the standard kinematics provided with the KRC. The
Kuka KR 6 R900 SIXX, shown in Fig. 6-a, is a 6 DOFs robotic
arm with a slim design and a small footprint.

According to the operational scenario, an Android mobile
application whose Graphic User Interface (GUI) is shown
in Fig. 6-b, is used to set the target position xt . By using
the writeVariable method of JOpenShowVar this vector is
forwarded to the KUKAVARPROXY and stored as a global
value in a data structure. Finally, a KRL actuator program
iteratively retrieves the new global data and uses the KRC
kinematics to actuate the robot. The code of the KRL
actuator program is shown in the Algorithm 4 sketch box.
For Kuka industrial robots, the idle time between motions

(a)

(b)

Fig. 5: (a) JOpenShowVar terminal can be used for debugging
purposes, (b) JOpenShowVar GUI can be used for monitoring
the robot’s state, visualise and manually set variables and
structures.

DEF ACTUATOR()
INI
PTP HOME Vel = 100 % DEFAULT
$ADVANCE=1
LOOP
PTP_REL MYPOS C_PTP

ENDLOOP
PTP HOME Vel = 100 % DEFAULT

END

Algorithm 4: KRL actuator program for the case study 1.

can be shortened by executing the time-consuming arithmetic
and logic instructions between motion commands while the
robot is moving, i.e. processing them during the advance run
(the instructions “run” in “advance” of the motion). Using
the system variable $ADVANCE, it is possible to define
the maximum number of motion blocks that the advance
run can process ahead of the main run (the motion block
currently being executed). Since the main loop of the Server
program consists of only one instruction, the system variable
$ADVANCE is initially set to 1 to avoid the unwanted
execution of the same line of code. Inside the main loop, a
relative movement is iteratively executed to the global vari-
able MYPOS, which is the one that stores the target position.
The key word C PTP is used to approximate the movement.
The approximate positioning instruction is executed in a time-
optimised manner: there is always at least one axis moving
with the programmed acceleration or velocity limits. The

(a) (b)

Fig. 6: Case study 1: (a) the Kuka KR 6 R900 SIXX manip-
ulator, (b) the GUI of the Android mobile application used
to control the arm.

system simultaneously ensures that the permissible gear and
motor torques for each axis are not exceeded. Furthermore,
the higher motion profile, set by default, ensures motion that
is optimised in terms of velocity and acceleration.

B. Case study 2: a two-dimensional line-following task with
the Kuka KR 6 R900 SIXX manipulator

In this case study, JOpenShowVar is adopted to perform
a two-dimensional line-following task with the same Kuka
robot used in the previous example. In this case, an open-
loop off-line application is implemented by using the standard
kinematics provided with the KRC. The considered task can
be used for applications like advanced welding operations
and similar. In this experiment, a camera is mounted on the
robot’s end-effector and can capture a photo of the desired
line to be followed on a plane. This vision feedback is
used for the off-line detection of the path before starting
the movement. In particular, once a photo of the line to be
followed is taken, the operator manually selects the desired
initial and final points. Then, the A* search algorithm [12]
is used to efficiently find a traversable path between these
two points within the region covered by the desired line.
The detected traversable path is sampled with a predefined
resolution and the resulting samples are stored in an array
variable. The same array is used as an off-line input for
the robot’s end-effector to be actuated point by point. The
experiment setup is shown in Fig. 7.

C. Case study 3: controlling the Kuka KR 6 R900 SIXX
manipulator with a Leap Motion Controller

In this case study, JOpenShowVar is used to control the
same robot (from the previous case studies) in a closed-
loop and with a custom control algorithm. This is done
to highlight the potential of the presented interface in de-
veloping alternative control methods that do not use the
standard kinematic model provided by Kuka. Moreover, a
Leap Motion Controller [9], shown in Fig. 8, is used as
alternative input device to control the robot. The Leap Motion

Camera

Arbitrary line to be followed

Reference points

Fig. 7: Case study 2: the experiment setup for a two-
dimensional line-following task with the Kuka KR 6 R900
SIXX manipulator.

Controller is a small USB input device that supports hand
and finger motions as input without requiring contact or
touching. This controller is designed to be placed on a
physical desktop, facing upwards. Using two monochromatic
infra-red (IR) cameras and three IR light-emitting diodes
(LEDs), the device observes a roughly hemispherical area,
to a distance of about 1 meter. The LEDs generate a 3D
pattern of dots of IR light and the cameras generate almost
300 frames per second of reflected data, which is then sent
through a USB cable to the host computer, where it is
analysed by the Leap Motion Controller software and can
be retrieved using the Leap Motion APIs. While the Leap
Motion Controller makes it possible to control all the joints
of human hands, in this specific case study, only the DOFs of
the wrist are used as an input signal to control the robot’s end-
effector. Each DOF of the wrist corresponds to a translational
axis in the workspace of the robot to be controlled. When
operating in position control mode, the input device works
as a position proportional replica so that the wrist motion
maps exactly to the motion of the robot’s end-effector with
constant speed, while, when operating in velocity control

Fig. 8: Case study 3: the Leap Motion Controller used to
operate the Kuka KR 6 R900 SIXX manipulator.

mode, a movement of the wrist in a particular direction will
produce a translational motion in the same direction at a
velocity proportional to the wrist displacement. In order for
small vibrations not to affect the motion of the robot’s end-
effector, a small spherical imaginary volume with a diameter
of about 8 cm is defined in the centre of the controller
monitoring space. As long as the operator’s wrist is located
within this volume, the robot’s end-effector does not move.
The operator’s hand has to be moved more than 4cm from
the center of the monitoring space in order to generate a
motion. Thanks to the modularity of the architecture, any
other joystick or input device can be used without influencing
the effectiveness of the proposed interface.

The user program runs on a remote computer and uses the
Leap Motion APIs to retrieve the target position xt according
to the operational scenario. By using the readVariable method
of JOpenShowVar, the actual joint angles qa are received.
This data is used as input for the custom control algorithm.
In this specific case study, the classical kinematic functions
and the Jacobian method [13] are used to implement (5)
and (6). Then, by using the writeVariable method of JOpen-
ShowVar the target joint configuration qt is forwarded to the
KUKAVARPROXY and stored as a global value in a structure.
Finally, a KRL actuator program iteratively retrieves the new
global data and actuates the robot.

The code of the KRL actuator program is shown in the
Algorithm 5 sketch box. It should be noted that the variable
MYAXIS is initialised to default values inside the initialisa-
tion (INI) fold. The system variable $ADVANCE is initially
set to 1. Then the current joint values are assigned to a local
structure variable named LOCAL. Inside the main loop, the
desired joint angles are iteratively assigned to LOCAL, axis
by axis. Finally, a PTP movement with C PTP approximation
is executed.

D. Case study 4: controlling the Kuka KR 6 R900 SIXX ma-
nipulator with a omega.7 haptic device from Force Dimension

The aim of this fourth case study is to show the pos-
sibility of operating the robot and transferring the corre-

DEF EXT_MOVE_AXIS()
DECL AXIS LOCAL
INI
PTP HOME Vel = 100 % DEFAULT
$ADVANCE=1
LOCAL.A1 = $AXIS_ACT.A1
...
LOCAL.A6 = $AXIS_ACT.A6
LOOP
LOCAL.A1 = LOCAL.A1 + MYAXIS.A1
...
LOCAL.A6 = LOCAL.A6 + MYAXIS.A6
PTP LOCAL C_PTP

ENDLOOP
PTP HOME Vel = 100 % DEFAULT

END

Algorithm 5: KRL actuator program for the case study 3.

sponding force feedback to the operator. For this purpose, a
bidirectional coupling between a Force Dimension omega.7
[14] haptic device and the same Kuka robot used in the
previous sections is established. In this case, an closed-loop
application is implemented by using the standard kinematics
provided with the KRC. The omega.7 is a 7 DOF haptic
interface with high precision active grasping capabilities and
orientation sensing. Finely tuned to display perfect gravity
compensation, the force-feedback gripper offers extraordi-
nary haptic capabilities, enabling instinctive interaction with
complex haptic applications. In this case study, the principle
of virtual works [13] is applied. According to this principle,
the following equation is valid:

JT
F = t, (7)

where J is the Jacobian matrix of the arm, F is the vector of
forces exerted from the robot’s end-effector to the environ-
ment and t is the vector of torques at the joints that can be
retrieved by using the readJointTorques method. By applying
this principle it is possible to simulate on the haptic device
a force feedback proportional to the force that the robot’s
end-effector is supporting. The experiment setup is shown in
Fig. 9.

V. EXPERIMENTAL RESULTS

Experiments related to the proposed case studies are car-
ried out to test the proposed communication interface in terms
of accuracy, performances and effectiveness.

Concerning the first and the third case studies, a demo
video is available on-line at:
https://youtu.be/fC8jb9MKgGw.

The first case study highlights the potential of JOpenShow-
Var in remotely controlling a Kuka industrial robot from an
Android mobile device. This possibility opens up to a variety
of useful purposes including human interface applications
and teleoperations. Nowadays, smartphones and tablets are
becoming computationally more and more powerful. In this
perspective, they are a perfect match with robots for devel-
oping alternative control systems. The use of smartphones

Fig. 9: Case study 4: controlling the Kuka KR 6 R900
SIXX manipulator with a omega.7 haptic device from Force
Dimension.

Fig. 10: Case study 2: the detected line and the actual path
followed by the robot’s end-effector respectively.

and tablets in research and development is also found in
other areas, as they represent a significant business oppor-
tunity for manufacturers, who need to consistently develop
better hardware and operating systems. For these reasons,
these applications are very interesting and appealing in the
forthcoming industrial applications.

A. Accuracy

Accuracy refers to the possibility of positioning the robot’s
end-effector at a desired target point within the workspace.
Concerning the second case study, the line-following exper-
iment is performed on a randomly generated line, drawn on
a table. Fig. 10 shows the detected line and the actual path
followed by the robot’s end-effector respectively. Once the
line is detected, the robot executes the movement off-line in
about 10s with a maximum position error less than 5 mm.

0 2 4 6 8 10 12 14 16 18 20
0.45

0.5

0.55

0.6

0.65
End−effector tracking, X axis

Time [s]

P
o
si

tio
n
 [
m

]

Actual
Desired

(a)

0 2 4 6 8 10 12 14 16 18 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
End−effector tracking, Y axis

Time [s]

P
o
si

tio
n
 [
m

]

Actual
Desired

(b)

0 2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
End−effector tracking, Z axis

Time [s]

P
o
si

tio
n
 [
m

]

Actual
Desired

(c)

Fig. 11: Case study 3: path tracking for (a) the X coordinate,
(b) the Y coordinate and (c) the Z coordinate.

This position error could be reduced even more by increasing
the sampling resolution of the detected traversable path.

B. Performances

Within the particular case study of the Leap Motion
Controller (case study 3), a real-time path tracking analysis of
the Cartesian paths for X , Y and Z coordinates is performed,
measuring the difference between the desired and actual
position of the robot’s end-effector. The results are shown
in Fig. 11.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

Time [s]

D
e

la
y

[m
s]

Fig. 12: Case study 3: time-delay analysis for the correspond-
ing Cartesian paths shown in Fig. 11.

Moreover, to assess the communication delay of JOpen-
ShowVar, a time-delay analysis is carried out.

The considered time-delay represents the time for each
message to be received, performed and notified to the client
by the KRC. Particularly, this time-delay is obtained by
considering the exact instant in which the request is dis-
patched from the client and the exact instant in which
the information is received back from the client. It is not
possible to exactly determine the time-delay mainly because
Kuka has not released any information about it. During our
experiments, a deterioration of the time-delay has usually
been noticed when making the selection of a program and
when the robot is engaged in some movements or there are
several active interrupts. When considering the causes of the
delay, it is possible to distinguish two main components that
affect the access time for a variable to be either read or
written from the client side:

• the time interval that is required for the TCP/IP protocol
to transfer the information from the client to the server
and then back to the client. This time component is non-
deterministic;

• the time interval that is required for the Kuka controller
to acquire the information from the robot. Also this time
component is non-deterministic.

As already mentioned in Section III, the time-delay is not
affected by the kind of access to be performed (whether
it is a reading or a writing operation) or by the length of
the message. Therefore, it is beneficial to aggregate several
variables in logical structures when reading or writing data.
By using data structures it is possible to simultaneously
access several variables, thereby minimising the access time.

Considering the third case study, a time-delay analysis
is carried out for the same Cartesian paths as shown in
Fig. 12. Even though there are a few spikes with a larger
time interval, an average access time of 4.27 ms is obtained
in this case. It should be noted that all the considered case
studies are equally affected by similar communication delays
except for the second case study which is performed off-line
and therefore not presenting any run-time delays.

To further assess the performances of the proposed inter-

Fig. 13: Target and response of the adopted PID controller
for all the joints of the robot.

face with regard to the communication delay, an additional
experiment is performed. In particular, the possibility of
developing alternative control methods is considered (as
presented in case study 3). Any custom control algorithm
that does not use the standard KRC kinematics must calcu-
late the corresponding sampling point configurations for the
desired end-effectors positions. In other words, each control
algorithm works as a motion planner. To ensure smooth
movements for the manipulators it is necessary to generate
trajectories out of these given sampling points. A well-suited
trajectory is the basic prerequisite for the design of a high-
performance tracking controller and ensures that no kinematic
nor dynamic limits are exceeded. Such a controller guarantees
that the controlled robot will follow its specified path without
drifting away. Therefore, feedback control has to be applied
to be able to compensate external disturbances as well as
disturbances from communication time delays. Note that time
data is a free parameter because, as already mentioned, the
sampling time of the mapping algorithm is not constant.
A possible solution for generating well-suited trajectories
consists of using a Proportional Integral Derivative (PID)
controller for each joint. To tune the PID parameters, different
methods can be used, such as the one proposed in [15]. The
response of the adopted PID controller is shown in Fig. 13
for all the joints of the robot. The interface provided by
JOpenShowVar demonstrates a relatively fast reaction to the
inputs and reasonable output error for research purposes,
considering the dimension of the controlled model.

C. Effectiveness

Concerning the fourth case study, the aim is to show
the possibility of operating the robot and transferring the
corresponding force feedback to the operator. The plots in
Fig. 14-a and Fig. 14-b show the actual position for the X , Y
and Z axes as a result of the haptic input device’s movements,
operated by the user, and the corresponding joint angles,
respectively. In this particular case, the operator manoeuvres
the robot to lift the end effector up at first, then down again
with a displacement also in the X and Y axes. In this case
study, the input signal is not scaled to the robot’s workspace
since the haptic device is only used to set the direction of
movement for the robot and to transfer the corresponding
force feedback to the operator. Even though there is a delay
between the input signal and the actual position, the results
show that the system is quite responsive to the user’s inputs.
Fig. 14-c and Fig. 14-d show the torques applied to the
robot’s joints and the corresponding forces applied to the
robot’s end-effector, respectively. The operator also perceives
a force feedback that is proportional to forces applied to the
robot’s end-effector.

VI. CONCLUSIONS AND FUTURE WORK

This paper highlights the features of JOpenShowVar as
a cross-platform communication interface to Kuka industrial
robots. Even though JOpenShowVar only provides a soft real-
time access to the manipulator to be controlled, this middle-
ware package opens up to a variety of possible applications
making it feasible to use different input devices, sensors and
to develop alternative control methods. Special care has been
devoted to keep JOpenShowVar methods intuitive and easy
to use. The versatility and effectiveness of the interface have
been demonstrated through four case studies. The first two
case studies are open-loop applications, while the last two
case studies describe the possibility of implementing closed-
loop applications. Recently, our research group employed
JOpenShowVar to realise a framework that makes it possible
to reproduce the challenging operational scenario of control-
ling offshore cranes via a safe laboratory setup [16].

In the future, different control algorithms such as the
ones implemented in [17], [18] and [19] may be tested as
alternatives to the standard KRC. Finally, some effort should
be put in the standardisation process of JOpenShowVar to
make it even more reliable for both the industrial and the
academic practice. It is the opinion of the authors that the
key to maximising the long-term, macroeconomic benefits for
the robotics industry and for academic robotics research relies
on the closely integrated development of open content, open
standards and open source. In this perspective, the integration
of the proposed interface with ROS is of crucial importance
as a necessary future work. The community of developers at
ROS is looking forward to the integration of JOpenShowVar.

VII. ACKNOWLEDGMENTS
This work is partly supported by the Research Council of

Norway through the Centres of Excellence funding scheme,
project number 223254 and the Innovation Programme for
Maritime Activities and Offshore Operations, project number
217768. REFERENCES

[1] M. Schopfer, F. Schmidt, M. Pardowitz, and H. Ritter, “Open source
real-time control software for the kuka light weight robot,” in Proc. of
the 8th IEEE World Congress on Intelligent Control and Automation
(WCICA), Jinan, China, 2010, pp. 444–449.

[2] G. Schreiber, A. Stemmer, and R. Bischoff, “The fast research interface
for the kuka lightweight robot,” in Proc. of the IEEE ICRA Workshop
on Innovative Robot Control Architectures for Demanding (Research)
Applications How to Modify and Enhance Commercial Controllers,
2010, pp. 15–21.

[3] KUKA Robotics Corporation. (2014, March) “KUKA”. [Online].
Available: http://www.kuka-robotics.com/

[4] KUKA, Expert Programming. KUKA Robotics Corporation, 2003.
[5] H. Mühe, A. Angerer, A. Hoffmann, and W. Reif, “On reverse-

engineering the kuka robot language,” in 1st IEEE/RSJ International
Workshop on Domain-Specific Languages and models for Robotic
systems DSLRob’10, International Conference on Intelligent Robots
and Systems (IROS), 2010, pp. 16, 217, 223, 224.

[6] KUKA Robotics Corporation. (2014, March) “KUKA, Hub
technologies”. [Online]. Available: http://www.kuka-robotics.com/
en/products/software/hub technologies/print/start.htm

[7] F. Sanfilippo, L. I. Hatledal, H. Zhang, M. Fago, and K. Y. Pettersen,
“JOpenShowVar: an open-source cross-platform communication inter-
face to kuka robots,” in Proc. of the IEEE International Conference on
Information and Automation (ICIA), Hailar, China, 2014, pp. 1154–
1159.

[8] Google Inc. (2014, March) “Android”. [Online]. Available: http:
//www.android.com/

[9] Leap Motion Inc. (2014, March) “The Leap Motion Controller”.
[Online]. Available: http://www.leapmotion.com/

[10] F. Chinello, S. Scheggi, F. Morbidi, and D. Prattichizzo, “Kuka control
toolbox,” IEEE Robotics & Automation Magazine, vol. 18, no. 4, pp.
69–79, 2011.

[11] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

[12] D. Delling, P. Sanders, D. Schultes, and D. Wagner, “Engineering route
planning algorithms,” in Algorithmics of large and complex networks.
Springer, 2009, pp. 117–139.

[13] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer,
2008.

[14] Force dimension. (2014, March) “omega.7”. [Online]. Available:
http://www.forcedimension.com/

[15] I. Pan, S. Das, and A. Gupta, “Tuning of an optimal fuzzy PID
controller with stochastic algorithms for networked control systems
with random time delay,” ISA transactions, vol. 50, no. 1, pp. 28–36,
2011.

[16] F. Sanfilippo, L. I. Hatledal, H. Zhang, W. Rekdalsbakken, and
K. Y. Pettersen, “A wave simulator and active heave compensation
framework for demanding offshore crane operations,” in Proc. of the
IEEE Canadian Conference on Electrical and Computer Engineering
(CCECE), Halifax, Nova Scotia, Canada, 2015, pp. 1588–1593.

[17] F. Sanfilippo, L. I. Hatledal, H. G. Schaathun, K. Y. Pettersen, and
H. Zhang, “A universal control architecture for maritime cranes and
robots using genetic algorithms as a possible mapping approach,”
in Proc. of the IEEE International Conference on Robotics and
Biomimetics (ROBIO), Shenzhen, China, 2013, pp. 322–327.

[18] F. Sanfilippo, L. I. Hatledal, H. Zhang, and K. Y. Pettersen, “A
mapping approach for controlling different maritime cranes and robots
using ANN,” in Proc. of the 2014 IEEE International Conference on
Mechatronics and Automation (ICMA), Tianjin, China, 2014, pp. 594–
599.

(a)

(b)

(c)

(d)

Fig. 14: Case study 4: (a) actual position as a result of the
haptic input device’s movements (in this case, the input signal
is not scaled to the robot’s workspace since the haptic device
is only used to set the direction of movement for the robot
and to transfer the force feedback to the operator), (b) joint
angles, (c) joint torques and (d) forces applied to the robot’s
end-effector.

[19] L. I. Hatledal, F. Sanfilippo, and H. Zhang, “JIOP: a java intelligent
optimisation and machine learning framework,” in Proc. of the 28th
European Conference on Modelling and Simulation (ECMS), Brescia,
Italy, 2014, pp. 101–107.

