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Abstract—In [1], a flexible and general control system ar-
chitecture that allows for modelling, simulation and control of
different models of maritime cranes and, more generally, robotic
arms was previously presented by our research group. Each
manipulator can be controlled by using the same universal input
device regardless of differences in size, kinematic structure,
degrees of freedom (DOFs), body morphology, constraints and
affordances. The architecture presented establishes the base
for the research of a flexible mapping procedure between a
universal input device and the manipulators to be controlled,
which is the topic of this paper.
Based on the same architecture, as a validating case study,

a new method for implementing such a mapping algorithm is
introduced in this paper. This method is based on the use of
Artificial Neural Networks. Using this approach, the system
is able to automatically learn the inverse kinematic properties
of different models. Learning is done iteratively based only
on observation of input-output relationship, unlike most other
control schemes. Related simulations are carried out to validate
the efficiency of the proposed mapping method.

Index Terms—Control architecture, Artificial Neural Net-
works, manipulators.

I. INTRODUCTION

In the maritime field, even though the operating environ-
ment can be very challenging, it is still quite common to use
relatively simple control interfaces to perform offshore crane
operations. Moreover, each input device normally controls
only one specific crane model. When considering working
efficiency and safety, this kind of control is extremely dif-
ficult to manage and extensive experience is required of
the operators. Therefore, low control flexibility and non-
standardisation are two crucial issues of the current maritime
crane control architecture that need to be overcome.
Maritime cranes, compared with robotic arms, rely on a

much more complex model of the environment with which
they interact. These kinds of cranes are widely used to handle
and transfer objects from large container ships to smaller
lighters or to the quays of the harbours. Therefore, their
control is always a challenging task, which involves many
problems such as load sway, positioning accuracy, wave
motion compensation and collision avoidance.

In [1], our research group presented a general architecture
that allows for modelling, simulation and control of different
models of maritime cranes and, more generally, robotic arms
by using the same universal input device. The main challenge
in doing this consists of finding a flexible way to map the
fixed DOFs of the universal input device to the variable DOFs
of the cranes or robots to be controlled. This process has to
be realised regardless of their differences in size, kinematic
structure, body morphology, constraints, affordances and so
on. The architecture allows for designing and testing different
mapping procedures.
By using the same architecture, as a validating case study, a

new way to implement such a mapping algorithm is presented
in this paper. This method is based on the use of Artificial
Neural Networks (ANN) [2] and using this approach, the
system is able to automatically learn the inverse kinematic
(IK) properties of different models.
The paper is organised as follows. In Section II, a re-

view of the related research work is given. In Section III,
we briefly summarize the control architecture proposed in
our previous work and shortly discuss a possible trajectory
tracking approach. As a validating case study, a new way
to implement a flexible mapping method based on the use
of ANN is presented. Related simulation results are shown
in Section IV. Finally, in Section V, conclusions and future
works are outlined.

II. RELATED RESEARCH WORK

In existing literature, only a few results have been re-
ported on overcoming the low control flexibility and non-
standardisation problems for the current maritime crane con-
trol architecture. In [3], Li and Wang presented a visual
simulation system for a shipborne crane. The system can
realise the visual simulation for trajectory-planning, joint
control and dynamic analysis. However, most of the previous
studies only concern the control of a specific crane/arm.
Very little work has been done regarding the possibility of
controlling different arms by using the same input device.
In [4], our research group presented a modular prototyping

system architecture that allows for modelling, simulation and



control of different robotic arms by using the Bond Graph
Method. The main drawback of this approach is that the
complexity of the system tends to rise when considering a
large number of DOFs.

A common assumption in all these previous works is
that the forward kinematic (FK) model of the arm to be
controlled is a priori knowledge. Classically, this assumption
enables researchers to either introduce analytical methods,
which offer exact solutions for simple kinematic chains, or
propose solutions based on numerical methods. However,
when considering arms with redundant DOFs, the IK can
have multiple solutions, and as such, singularity problems
could arise. In addition, this method is not very flexible,
especially when planning to control different arms using
a universal input device because several IK models are
needed: one for each arm or crane to be controlled. An
alternative approach to the problem might consist of using
methods that do not assume a priori knowledge for the
IK model of the arm: a solution that derives its kinematic
properties from a machine learning procedure. In this way,
the system would be able to automatically learn the kinematic
properties of the manipulator to be controlled. This idea
has been pursued by several scientists. In fact, during the
last few years, there has been increasing interest regarding
research on learning algorithms and many efforts have been
made to understand how to apply this technology to various
control problems. In particular, several ANN models have
been developed by applying biologically-inspired control
mechanisms to robot control tasks. Especially, in order to
deal with complex robotic systems and with the related non-
linear problems that arise when considering sophisticated
types of actuators, several ANN models have been developed.
In [5], Wang et al. presented a Lagrangian neural network
for the IK computation of redundant manipulators based
on the Euclidean norm of the joint velocities. This was
developed at first to show its feasibility. Next, in the same
work a primal-dual neural network for minimum infinity
norm kinematic control was presented. To reduce the model
complexity and increase the computational efficiency, a dual
neural network was finally introduced with the advantages of
simple architecture and exponential convergence. However,
the simulation results are based only on a specific industrial
robot, the PA10 robot manipulator. Moreover, the model does
not exhibit biologically realistic behaviour. In [6], Bouganis
et al. presented a spiking neural network architecture that
autonomously learns to control a 4 DOFs robotic arm after
an initial period of motor babbling (motor babbling can
be observed in babies, where a repetitive action-perception
cycle generates associative information between the various
representations). The spiking neurons have been simulated
according to Izhikevichs model [7], which exhibits biologi-
cally realistic behaviour and yet is computationally efficient.
These works demonstrate that ANNs can be used to model

complex relationships between inputs and outputs.
On the other hand, most of these previous intelligent

systems are only able to learn the control of a specific
crane/arm. To date, it is not possible to use a common
universal input device to control various cranes/arms with
different kinematics. Moreover, most of these works require
the same DOFs for both the input device and the model to
be controlled.

III. SYSTEM ARCHITECTURE AND CASE STUDY
A. Architecture
In this section we briefly summarize the control archi-

tecture proposed in our previous work. For further details,
please see [1]. The proposed control system architecture
is shown in Fig. 1. It is a client-server architecture with
the input device running as a client and communicating
with a server where the logic of the control algorithm is
implemented. The controlled arms are simulated in a 3D
visualisation environment, which also acts as a client and
provides the user with an intuitive visual feedback. The
proposed architecture provides the possibility of controlling
the arms in position mode or velocity mode. To realise these
two possible operation modes, when the operator manoeuvres
the manipulator, a vector signal with no semantic, s, is sent
from the universal input device to the server. Here, according
to the operational scenario, the vector signal is interpreted as
the desired position xd or the desired velocity vector ẋd .
Additionally, in order to adjust the size of the input

device’s workspace to the arm to be controlled, a scaling
factor is introduced to calculate the coordinate of the point to
be reached. The proposed architecture allows for expanding
and shifting the small-scale physical workspace of the input
device to a virtual expanded workspace allowing the robot
arm for more accurate and precise movements. In particular,
referring to Fig. 2 and denoting the reference frame of the
input device’s physical workspace with Oi, the reference
frame of the input device’s virtual workspace with Ov, and
the reference frame of the manipulator workspace with Ow,
the desired scaled position, xds, is calculated as follows:

xds = kpxd+ xw, (1)

where kp is the position scaling factor and xw is a shifting
vector that defines the position of the virtual reference frame
with respect to the global reference frame. Similarly, the
desired velocity vector can also be scaled to allow the
operator to execute slower or faster movements according
to the task to be accomplished. The desired scaled velocity
vector, ẋds, can be obtained as follows:

ẋds = kvẋd , (2)

where, kv is the velocity scaling factor.
Then, according to the desired mode of operation, the

mapping control algorithm parses those values to the desired
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Fig. 1: The proposed control system architecture.

joint angles θd or desired joint velocities θ̇d of the manipu-
lator, respectively. Essentially, for all the different models to
be controlled, the mapping methods have to implement the
classic IK functions that can be generalised as follows:

θd = f−1p (xds), (3)

concerning position control, and

θ̇d = f−1v (θa, ẋds), (4)

for velocity control, where θa is the the actual joint angles
vector.
The calculated desired joint angles θd or joint velocities

θ̇d are then forwarded from the server to the visualisation
environment in order to actuate the crane model. As feedback
from the visualisation environment, the actual joint angles θa
and joint velocities θ̇a are sent back to the server and can be
used by the control mapping algorithm.
Notice that the proposed architecture allow for imple-

menting different mapping methods. Each mapping control
algorithm has to realise the mapping between the fixed DOFs
of the universal input device and the variable DOFs of
the manipulator to be controlled. It is important that each
control algorithm be implemented as an independent and
interchangeable module and that it satisfies the interface
specified by the system, (3) and (4), in order to respect the
modularity of the proposed architecture.
A relevant feature of the proposed architecture is that the

robot model can be separated from the control algorithm to
be used. In particular, no matter which control algorithm
is used, the manipulators to be controlled can be added to
the system simply by defining their corresponding standard
Denavit-Hartenberg (D-H) tables [8] and their joint limits.
For all the models to be controlled, the different mapping

methods calculate the corresponding sampling point con-
figurations for the desired end-effector’s positions. In other
words, each mapping method works as a motion planner. In
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Fig. 2: Input device physical and virtual workspaces.

order to ensure smooth movements for the manipulators it is
necessary to generate trajectories out of these given sampling
points. A well-suited trajectory is the basic prerequisite for
the design of a high-performance tracking controller and
ensures that no kinematic nor dynamic limits are exceeded.
Such a controller guarantees that the controlled robot will
follow its specified path without drifting away. Therefore,
feedback control has to be applied to be able to compensate
external disturbances as well as disturbances from commu-
nication time delays. Note that time data is a free parameter
because the sampling time of the mapping algorithm is
generally not constant.
A possible solution for generating well-suited trajectories

consists of using a Proportional Integral Derivative (PID)
controller for each joint, as shown in Fig. 3. Notice that using
this approach, the nature of the crane actuators - whether
they are hydraulic, pneumatic, electric or mechanical - can
be also taken into account. However, since the main focus
of this work is on building an effective mapping method, all
problems related to rope pendulations or wave impacts on
the payload are not considered in this paper but they can be
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Fig. 3: Trajectory tracking using a PID controller.
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Fig. 4: The proposed ANN architecture.

included in the model at a later stage.

B. A Mapping Method Based on ANN
As a validating case study, an alternative mapping method

that does not assume a priori knowledge for the IK model
of the arm to be controlled is presented in this subsection.
This approach is based on the use of a supervised feed
forward ANN. In particular, the system automatically learn
the mapping function, (4), for the different manipulators to
be controlled. This approach only requires the FK models.
Note that the unique feature of this method compared to
previous works is that the same set-up of the proposed
algorithm is adopted independently of which manipulator is
being controlled and whether the selected control mode is
position or velocity. Moreover, when controlling each specific
manipulator and once selecting the particular control mode,
the same instance of ANN is continuously used; what differs
are the semantics and the size of inputs and outputs which
are dynamically and automatically set by the system.
The network architecture of this validating case study is

shown in Fig. 4. It is a three-layer ANN which consists of
one input, one output and one hidden layer. Each neuron
in the network is fully connected with every other neuron
of the next layer. Adaptive weights are associated to the
neuron’s interconnections. A sigmoid transfer function is
used as an activation function. Note that these particular
arbitrary choices have been selected for this preliminary case
study, however different learning patterns can be easily tested
and used at a later stage. The input vector is given by {ẋt ,θa},

where ẋt is the target velocity whereas θa is the actual
joint configuration. The target velocity, ẋt , depends on the
operation scenario and it is given by:

ẋt ≃ xds− xa, (5)

if operating in position control mode, where ẋa is the actual
end-effector velocity. If instead operating in velocity control
mode, it is given by:

ẋt = ẋds. (6)

From the top side, the output vector, denoted by θ̇nn, consists
of the target joint velocities. Notice that the number of
neurons in the input and output layers changes according
to the number of DOFs of the manipulator to be controlled.
The number of hidden neurons is experimentally chosen to be
equal to 3/2 of the sum of the size of the input layer and the
size of the output layer. In this specific case study, the control
of the end-effector’s orientation is not considered as part of
the mapping algorithm but it can easily be included at a later
stage without affecting the effectiveness of the architecture
presented. In the following, the key steps of the algorithm
are described.
1) Error Function: the error of every sample is evaluated

by using a error function that assesses the Mean Square Error
(MSE) between the desired joint velocity θ̇d and the actual
joint velocity θ̇a for n training samples:

MSE(θ̇d , θ̇a) =
1
n

n

∑
i=1

(θ̇d− θ̇a)2. (7)

2) Training Data: One of the biggest challenges when
studying the IK of a serial manipulator by using ANNs
consists of generating a suitable training data set, a set of ex-
ample pairs ({ẋt ,θa}, θ̇nn). Different researchers have applied
different methods for gathering training data, some of them
use the kinematics equations, some of them use the network
inversion method, some of them use the cubic trajectory
planning, some of them use a simulation program for this
purpose, and some use data recorded experimentally from
sensors fixed on each joint. In this specific case study, the
Jacobian matrix is used. First, a set of samples is randomly
generated in the Joint space, then the Jacobian matrix is
built by using the differential approach. Successively, a set
of random joint velocities is created and used to calculate the
corresponding velocities in the Cartesian space.
3) Training Process: in supervised learning, the aim is

to find a function in the allowed class of functions that
matches the examples. In other words, the objective is to
infer the mapping implied by the data. To do that, the
weights that are associated with the neuron’s interconnections
are continuously updated during the training process. The
Resilient Propagation (RPROP) learning heuristic is used as
training method. The RPROP approach was proposed in [9]
by Riedmiller et al. to overcome the inherent disadvantages
of pure gradient-descent. RPROP performs a local adaptation



of the weight-updates according to the behaviour of the
error function. Contrary to other adaptive techniques, the
effect of the RPROP adaptation process is not blurred by
the unforeseeable influence of the size of the derivative, but
only dependent on the temporal behaviour of its sign. This
leads to an efficient and transparent adaptation process.
4) Present Output: According to the operational scenario,

the output is obtained by:

θd =
∫
θ̇nn dt, (8)

when operating in position control mode, or as:

θ̇d = θ̇nn, (9)

when operating in velocity control mode.

IV. SIMULATIONS RESULTS

In this study, a Microsoft Xbox 360 joystick controller is
used as a universal input device on the client side. Each
DOF of the joystick corresponds to a translational axis in
the workspace of the crane to be controlled. When operating
in position control mode, the joystick works as a position
proportional replica whose motion maps exactly to the motion
of the crane end-effector with constant speed, while, when
operating in velocity control mode, a movement of the
joystick in a particular direction will produce a translational
motion in the same direction at a velocity proportional to
the joystick displacement. In both operation cases, when
the operator’s hand is removed from the joystick, the latter
automatically returns to its starting point. Note that thanks to
the modularity of the architecture, any other joystick or input
device can be used without influencing the effectiveness of
the system.
From an implementation point of view, the logic of the

control architecture lies on the server side, which is im-
plemented by using the Java programming language. Each
manipulator to be controlled is modelled as a Java class
which embodies a D-H table, a set of joints, a workspace
as attributes and a Solver as an abstract subclass. The
Solver abstract subclass has two methods - positionSolver and
velocitySolver - which have the prototypes that the mapping
functions have - (3) and (4) respectively. The ANN mapping
method described in the previous section is a particular
implementation of this Solver but new mapping methods
can easily be added by simply providing a corresponding
implementation of the same abstract subclass.
To speed up the developing process and to improve the

reliability of the system, several libraries are used. In par-
ticular, the Efficient Java Matrix Library [10] is adopted
to add support for matrix manipulations, while the ANN
is implemented by using the Encog Java neural network
framework [11]. Moreover, the manipulators to be controlled
can easily be added to the system by simply defining their

TABLE I: D-H table of the knuckle boom crane, where L1 =
2.62m, L2 = 7.01m and L3 = 3.46m

i αi−1 ai−1 di θi
1 0 0 L1 θ1
2 π

2 0 0 θ2
3 0 L2 0 θ3
4 0 L3 0 0

Fig. 5: The simulated knuckle boom crane model.

corresponding D-H tables and their specific joint limits in an
XML document.
The system is based on a distributed structure and com-

munication between client, server and the visualisation en-
vironment is realised by using the TCP/IP protocol. This
also makes it possible to remotely control the different
manipulators. Regarding the visualisation environment, in
this preliminary work, the game engine Unity3D [12] is
used to visualise the different models. However, any other
visualisation environment could be used without affecting the
effectiveness of the proposed architecture.
Related simulations are carried out in order to test the

architecture within the particular case study of the proposed
mapping method. In detail, as shown in Fig. 5, a knuckle
boom crane with 3 DOFs is modelled and simulated. See
Table I for the crane’s D-H table. In this specific case,
the number of neurons in the input layer is 6, the number
of neurons in the output layer is 3 and the hidden layer
consists of 14 neurons. The learning curve for the network
configuration is shown in Fig. 6. The training process is
ended after 300.000 iterations with a CPU time of 2094s
(based on a Intel Core i7-3820QM machine) and a MSE of
0.0066. For the same model, a trajectory tracking analysis
of the Cartesian paths for X, Y and Z coordinates is also
performed, measuring the difference between desired and
calculated position before the PID regulation process. The re-
sults are shown in Fig. 7. The proposed system demonstrates
quite a fast reaction to the inputs and reasonable output error
considering the dimension of the controlled model.

V. CONCLUSION AND FUTURE WORK

Based on the control system architecture that our re-
search group recently presented for modelling, simulation
and control of different models of maritime cranes and, more
generally, robotic arms by using the same universal input
device, a new mapping algorithm has been presented in this
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Fig. 7: Trajectory tracking after the training is finished for
(a) the X coordinate, (b) the Y coordinate and (c) the Z
coordinate.

paper as a validating case study. This method is based on
the use of ANNs. Using this approach, the system is able
to automatically learn the IK properties of different models.
Learning is done iteratively based only on observation of
input-output relationships, unlike most other control schemes.
As future work, it would be interesting to compare different

mapping methods and their corresponding performances. In
order to do this, a machine learning framework that provides
a selection of existing learning approaches and allows for
implementing new algorithms has been developed by our
research group [13]. This framework will be used to develop
a standard benchmark suite for testing and measuring the ef-
fectiveness and accuracy of the compared mapping methods,
especially for maritime cranes.
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