

Optimisation of Boids Swarm Model Based on Genetic Algorithm and Particle
Swarm Optimisation Algorithm (Comparative Study)

Saleh Alaliyat

Faculty of Engineering and Natural
Sciences

Aalesund University College
N-6025, Aalesund, Norway

Email: saal@hials.no

Harald Yndestad
Faculty of Engineering and Natural

Sciences
Aalesund University College
N-6025, Aalesund, Norway

Email: hy@hials.no

Filippo Sanfilippo
Department of Maritime Technology

and Operations
Aalesund University College
N-6025, Aalesund, Norway

Email: fisa@hials.no

KEYWORDS
Flocking behaviour, genetic algorithms, and particle
swarm optimisation.

ABSTRACT

In this paper, we present two optimisation methods
for a generic boids swarm model which is derived from
the original Reynolds’ boids model to simulate the
aggregate moving of a fish school. The aggregate
motion is the result of the interaction of the relatively
simple behaviours of the individual simulated boids1.
The aggregate moving vector is a linear combination of
every simple behaviour rule vector. The moving vector
coefficients should be identified and optimised to have a
realistic flocking moving behaviour. We proposed two
methods to optimise these coefficients, by using genetic
algorithm (GA) and particle swarm optimisation
algorithm (PSO). Both GA and PSO are population
based heuristic search techniques which can be used to
solve the optimisation problems. The experimental
results show that optimisation of boids model by using
PSO is faster and gives better convergence than using
GA.

INTRODUCTION

Many animals in the nature move in groups: fish
swim in schools, birds fly in flocks, sheep move in
herds, insects move in swarm and ants distribute to find
a food source and then all ants follow path to the food.
Simulating the aggregate motion is an important issue in
the areas of artificial life and computer animation and in
a lot of their applications such as games and movies.
Reynolds (1987) proposed a first computer model of
group animal motion such as fish schools and bird
flocks. He called his model as “boids model”, where
boids refer to the generic flocking simulated creatures.
The aggregate moving of the simulated boids is the
result of the interaction of the relatively simple
behaviours of the individual simulated boid. An
interesting look at boids can be taken from the
perspective of artificial life where is the holistic
emergent phenomena is the result of interactions of
independent entities (Anthony 2002). The boids model
has three simple rules applied to the boids. The rules
are: each boid move to avoid crowding with its

1 Boids are bird-like objects that were developed in the 1980s to model flocking
behaviour.

neighbours, match and coordinate its movements with
its neighbours, and move to gather with the others.
Other rules such as avoiding obstacles and goal seeking
have been included in steering behaviour model
(Reynolds, 1999) and in many simulations based on
boids model later on. For instance, Delgado (2007)
extended the basic boids model to include the effects of
fear. Olfaction was used to transmit emotion between
animals, through pheromones modelled as particles in a
free expansion gas. Hartman and Benes (2006) added a
complementary force to the alignment (steer towards the
average heading of neighbours) that they call the change
of leadership. This steer defines the chance of the boid
to become a leader and try to escape.

After 1987, the boids model is often used in
computer graphics to provide realistic life-look
representations of the aggregate motion of groups. For
instance, in the 1998 Valve Video Game Company has
used boids model in Half-Life video game for the flying
bird-like creatures (Valvesoftware.com 2014). The
boids model represented an enormous step forward
compared to the traditional techniques used in computer
animation for motion pictures. The first animation
created with the boids model was in the computer
animation shot film called Stanley and Stella in:
Breaking the Ice in 1987 (Ice' and Malone, 2014). After
that, the boids model was used in a feature film
introduction of Batman Returns in 1992 (Returns and
Burton et al., 2014). Then the boids model has been
used in many games and films and in many other
interesting applications.

In the boids swarm model, each rule is represented
by a vector. The vector by its two components
(magnitude and direction) is adaptive to the
environment. The boid moving vector is a linear
combination of every behaviour rule vector. The setting
of the moving vector coefficients becomes more
difficult by increasing more behaviour rules. These
coefficients should be determined and optimised to have
a realistic moving behaviour. In this context, we use two
optimisation algorithms to optimise the boids model by
finding the best coefficients values and combination in
order to minimise the objective function. Firstly, we
propose a GA to optimise the coefficients in a generic
boids model. Secondly we substitute the GA by PSO to
optimise the coefficients in the same generic boids
model and use PSO to find food sources. Then we do a
comparison of these two models by focusing on the
advantages and disadvantages of each algorithm.

THE BOIDS MODEL

In 1986, Reynolds has developed the boids model.
His published paper about the boids model (Reynolds
1987) was cited so many times and extended in so many
different ways. Many of the extensions present
additional rules to the boids, some describe constrained
solution, some tend to easy solutions usable in computer
games, some extend the previous work in spite of
computational complexity, etc.

Reynolds (1987) describes the flock behaviour2 as a
result of the motion and the interaction of boids. Each
boid has three simple rules of steering behaviours that
describe how an individual boid move based on the
positions and velocities of its flock mates (social
reaction).

• Separation (figure 1(a)): each boid keep a
distance from other boids nearby to avoid
collision and prevent crowding.

• Alignment (figure 1(b)): each boid match the
direction and the speed of its neighbours. This
rule causes boids to follow each other.

• Cohesion (figure 1(c)): each boid tends to move
to the average position of its neighbours.

(a)

(b)

(c)

(a) Separation rule
(b) Alignment rule
(c) Cohesion rule

Figure 1: The boids social rules (Reynolds 1987).

Reynolds (1999) has extended the boids model to
include more individual-based rules of the steering
behaviours, to have more advanced individuals which
are capable to finish specific task or adapt to complex
environments. Some of these behaviours are:

• Obstacle avoidance (figure 2(a)): The obstacle
avoidance behaviour allows the boids move in
cluttered environment by dodging around
obstacles.

• Leader following (figure 2(b)): this behaviour
causes one or more boids to follow another
moving boid selected as a leader.

2 We mean by Flock behaviour in this paper as behaviour of flock, school, herd
and swarm.

(a)

(b)

Figure 2: Steering behaviours rules (a) Obstacle avoidance (b)
leader following(Reynolds 1999).

Based on Reynolds model, we have implemented a
generic boids swarm model in Unity3D (Unity3d.com
2014), the program is written in MonoDevelop Unity-
C# (Docs.unity3d.com 2014). The aim is to develop a
generic model that can be used in simulating the
aggregate motion for flocks of birds, schools of fish or
herds of animals. The model has five rules:

• Cohesion: steer to move toward the average
position of local flock mates (as in the original
Reynolds’ model). By applying cohesion rule
keeps the boids together. This rule acts as the
complement of the separation. If only cohesion
rule is applied, all the boids in the flock will
merge into one single position. Cohesion (𝐶𝑜ℎ!)
of the boid (𝑏!) is calculated in two steps. First,
the center (𝐹𝑐!) of the flock (𝑓) that has this boid
is calculated as in equation 1. Then the tendency
of the boid to navigate toward the center of
density of the flock is calculated as the cohesion
displacement vector as in equation 2.

𝐹𝑐! =
!!
!∀!!∈! (1)

 Where, 𝑝! is the position of boid j and N is the
total number of boids in 𝑓

 𝐶𝑜ℎ!!𝐹𝑐! − 𝑝! (2)

• Alignment: steer to match the heading and the
speed of its neighbours. This rule tries to make
the boids mimic each other’s course and speed.
Boids tend to align with the velocity of their
flock mates. The alignment (𝐴𝑙𝑖!) is calculated in
two steps. First, the average velocity vector of
the flock mates (𝐹𝑣!) is calculated by equation 3.
Then 𝐴𝑙𝑖! is calculated as the displacement vector
in equation 4.

𝐹𝑣! =
!!
!∀!!!" (3)

 𝐴𝑙𝚤!!𝐹𝑣! − 𝑣! (4)

 Where 𝑣! is the velocity vector of boid i
 If this rule was not used, the boids would bounce

around a lot and not form the beautiful flocking
behaviour that can be seen in the nature.

• Separation: steer to avoid collection and
overcrowding with other flock mates. There are
many ways to implement this rule. An efficient
solution to calculate the separation (𝑆𝑒𝑝!) is by
applying equation 5. Vectors defined by the

position of the boid 𝑏! and each visible boid 𝑏! are
summed, then separation steer (𝑆𝑒𝑝!) is calculated
as the negative sum of these vectors.

𝑆𝑒𝑝! = − 𝑝! − 𝑝!∀!!!" (5)

 If only the separation rule is applied, the flock
will dissipate.

• Leader following: steer to follow another moving
boid selected as a leader (𝑝!). The leader
following (𝐿𝑒𝑑!) is calculated by equation 6.

𝐿𝑒𝑑! = 𝐿 ∗ 𝑝! − 𝑝! (6)

 Where 𝐿 is a leader strength factor. (Note: the
moving vector (velocity) has limits, minimum
and maximum).

• Random movement: this rule is added to have
more realistic flock behaviour. This rule is
depending on the random number generator
inside the game engine (Unity3D). The random
movement (𝑅𝑎𝑛𝑑!) is calculated as in equation 7.

𝑅𝑎𝑛𝑑! = −𝑓𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑟 (7)

Where 𝑟 is a unit sphere random vector and
𝑓𝑓𝑎𝑐𝑡𝑜𝑟 is a flock random strength factor.

Then the moving vector (𝑉!) is for boid (𝑏!) is
calculated by combining all the steering behaviour
vectors as in equation 8.

𝑉! = 𝑤! 𝐶𝑜ℎ! + 𝑤! 𝐴𝑙𝚤! + 𝑤!𝑆𝑒𝑝! + 𝑤!𝐿𝑒𝑑! + 𝑤!𝑅𝑎𝑛𝑑! (8)

Where 𝑤! are the coefficients describing influences of
each steering rule and used to balance the five rules.

We have used the Unity3D to implement the boids
model to get the benefits of using a game engine. The
first benefit is the amazing visualisation that we get in
Unity3D. So we skip wasting time to model and
program the boid’s shape and its geometry. In Unity3D,
it is easy to build a boid such as a bird, a fish or a sheep
and attach some life-look animation to it, or import the
3D model of the boid from other programs and attach a
built in animation to it or program the animation from
the scratch. In this model we exploit the collision
detection component in Unity3D game engine to avoid
the obstacles. Each obstacle has a physic’s collision
component that doesn’t let other objects to move
through the collision bounds (obstacle’s space). In
another words, the obstacles will be excluded from the
boids flocking space. We will show the results in the
experimental results section.

GENETIC ALGORITHMS FOR OPTIMISATION
OF BOIDS MODEL

In this section, we will give an overview of GA in
general and some examples of its applications. Then we
present our proposed model (GA for optimisation of
boids model).

Genetic Algorithm:
 Genetic algorithm (GA) is an optimisation and
search technique based on the principles of genetic and
natural selection (Haupt, 2003). A GA allows a
population composed of many individuals to evolve
under specified selection rules to a state that maximise
the fitness (i.e., minimizes the cost function). Genetic
algorithms (GAs) were invented by John Holland in
1960s and were developed by him and his students in
1960s and 1970s. Holland (1975) presented the GA as
an abstraction of biological evolution and gave a
theoretical framework for adaptation under GA.

GA belong to the larger class of evolutionary
algorithms, which generate solutions to optimization
problems using techniques inspired by natural evolution
such as selection (reproduction), crossover
(recombination) and mutation. The evolution process
starts from a population of individuals generated
randomly within the search space and continues for
generations. In each generation, fitness of every
individual is evaluated, and multiple individuals are
randomly selected from the current population based on
their fitness and modified by recombination and
mutation operation to form a new population. Then this
new population will be used for the next generation of
the evolution. In general, the search process ends when
either a maximum number of generations have been
produced or a fitness level has been reached for the
population. The flowchart of GA is shown in (figure 3).

Figure 3: Flowchart of GA

In a GA, it’s necessary to be able to evaluate how
good a potential solution is relative to other potential
solutions. The fitness function is responsible for
performing this evaluation and returning a fitness value
(positive integer number) that reflects how optimal the
solution is. The fitness function is associated with the
objective function of the problem. The fitness value of
the individual is used to determine the probability with
which the individual is selected into the new population.
A common metaphor for the selection process is a
roulette wheel selection (Fogel, 2000).

Traditional methods of search and optimization are
too slow in finding a solution in a very complex search
space. GA is a robust search method requiring little
information to search effectively in a large or poorly
understood search space. In particular a genetic search

progress through a population of points in contrast to
the single point of focus of most search algorithms.
Moreover, it is useful in the very tricky area of
nonlinear problems. GAs have been used to solve
optimisation problems in different fields such as
automotive design, engineering design, robotics,
optimised routing, games, etc. Chen (2006) has applied
GAs to optimise the behaviour of a school of fish.

GA for optimisation of moving vector in the boids
model:

The moving vector (𝑉!) in equation 8 for each boid
(𝑏!) is a combination of all the five steering behaviour
vectors. And the movements are balanced by the 𝑤!
weight coefficients, so these coefficients should be
optimized to have realistic and life-look behaviour. We
have removed the random steering behaviour in the
moving vector to exclude the random movements for
the boids. The new moving vector is:

𝑉! = 𝑤! 𝐶𝑜ℎ! + 𝑤! 𝐴𝑙𝚤! + 𝑤!𝑆𝑒𝑝! + 𝑤!𝐿𝑒𝑑! (9)

 We have used GA to optimise these coefficients and
getting the benefit from using GA for parameters
optimisation and finding a global optimum solution. The
goal is to find the optimal solutions in terms of the
variables (coefficients). Thus we should define
mathematically what is the optimal solution. We begin
the GA by defining the chromosome. The chromosome
is an array of the coefficients values that will be
optimised. In this case the chromosome has four
variables and is written as a four-element row vector.

𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 = 𝑤!,𝑤!,𝑤!,𝑤! (10)

Then we should formulate the cost function that gives a
cost for each chromosome.

𝑐𝑜𝑠𝑡 = 𝑓(𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒) = 𝑓(𝑤!,𝑤!,𝑤!,𝑤!) (11)

 In our case, the optimal solution is to have life-look
flock behaviour. Measuring the flock behaviour can be
very complicated process, expensive computationally
and then time consuming. Since the purpose of this
paper is to build a generic boids model and optimise it
by different optimisation methods, we suggest a simple
cost function. In the flowing, we explain the proposed
cost function which is divided into five parts.

• Related to the alignment rule: The divergence

between the direction of the boid and the average
direction of the flock should be minimised. The
divergence is the angle 𝜃 between the boid
velocity vector 𝑣! and the average flock velocity
vector.

𝑐𝑜𝑠𝑡! = 𝜃 (12)

• Related to the leader following rule: The
divergence between the direction and the
distance of the boid and the direction and the
distance of the leader should be minimised.

𝑐𝑜𝑠𝑡! = 𝑑 (13)

Where d is the distance between 𝑝! and 𝑝!
𝑐𝑜𝑠𝑡! = 𝛼 (14)

Where 𝛼 is the angle between the boid velocity
vector 𝑣! and the leader velocity vector.

• Related to the separation and cohesion rules: The
boids distribution should be optimised to avoid
crowding or losing contact and having nice
flocking. To do this; we calculate the distance
between the boid and the flock center first 𝑑!.
Then we check all the boids, if they are nearby
(<keepd) or far enough (>keepd).

If (𝑝! − 𝑝! ≤ 𝑘𝑒𝑒𝑝𝑑),

𝑐𝑜𝑠𝑡! = 𝑑! ∗
!!!!! !!""#$

!

!""#$!∀!!!" (15)

But for the far boids,
If (𝑝! − 𝑝! > 𝑘𝑒𝑒𝑝𝑑)

𝑐𝑜𝑠𝑡! = 𝑑! ∗
!!!!! !!""#$

!

!!!!""#$!∀!!!" (16)

Then the cost is:
𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡! + 𝑐𝑜𝑠𝑡! + 𝑐𝑜𝑠𝑡! + 𝑐𝑜𝑠𝑡! + 𝑐𝑜𝑠𝑡! (17)

We have used the continuous GA as explained in
(Haupt, 2003). We used the parameters in (Table 1). We
will analyse the results in experiment results section.

Number of optimisation variables 4
Upper limit on optimisation variables 1
Lower limit on optimisation variables 0
Maximum iteration 100
Minimum cost 0
Population size 20
Mutation rate 0.2
Selection rate 0.5

Table 1: GA parameters

PARTICLE SWARM OPTIMISATION OF BOIDS
MODEL

 In this section, we will give an overview of PSO
algorithm in general and some examples of its
applications. Then we present our proposed model (PSO
for optimisation of boids model).

Particle Swarm Optimisation:
PSO is a computational method that optimises a

problem by iteratively trying to improve a candidate
solution with regard to a given measure of quality.
Kennedy and Eberhart introduced PSO in 1995
(Kennedy, 1995). PSO was originally used to solve non-
linear continuous optimization problems, but more
recently it has been used in many practical, real-life
application problems. For example, PSO has been
successfully applied to track dynamic systems
(Eberhart, 2001) and evolve weights and structure of
neural networks (Zhang, 2000). PSO draws inspiration
from the sociological behaviour associated with bird
flocking. It is a natural observation that birds can fly in
large groups with no collision for extended long
distances, making use of their effort to maintain an
optimum distance between themselves and their
neighbours.

Cui (2009) has developed a hypried PSO and boids
model (Boids-PSO), where cohesion rule and alignment

rule are both employed to improve the PSO algorithm
for boids simulation and to overcome the weekness of
biological background of PSO. But in our case we use
PSO as an optimisation technique to optimise the
coefficients in the moving vector.

The PSO methodology operates by placing a group
of individual particles into a continues search space,
wherein each particle is initialised with a random
position and a random initial velocity in the search
space. The position and velocity are updated
synchronously in each iteration of the algorithm. Each
particle adjust its velocity according to its own flight
experience and the other’s experience in the swarm in
such a way that it accelerates towards positions that
have high fitness values in previous iterations. In other
words, each particle keeps track of its coordinates in the
solution space that are associated with the best solution
that has achieved so far by its self. This value is called
personal best (pbest), Another best value that is tracked
by the PSO is the best value obtained so far by any
particle in the neighbourhood of that particle. This value
is called (best). So the basic concept of PSO lies in
accelerating each particle toward its pbest and the gbest
locations, with a random weighted acceleration at each
time step as shown in (figure 4).

sk : current searching point.
sk+1: modified searching point.
vk: current velocity.
vk+1: modified velocity.
vpbest : velocity based on pbest.
vgbest : velocity based on gbest

Figure 4: Concept of particle position modification by PSO

The modification of the particle’s position can be
mathematically modelled according to equation 18.

𝑣 𝑘 + 1 = 𝑣 𝑘 + 𝑐!𝑅! 𝑝𝑏𝑒𝑠𝑡 − 𝑠! 𝑘 + 𝑐!𝑅! 𝑔𝑏𝑒𝑠𝑡 − 𝑠! 𝑘

(18)

Where,
 𝑣 𝑘 is the velocity of a particle at iteration k.
 𝑅! and 𝑅! are random numbers in the range of [0,1]
with the same size of the swarm population.
𝑐! and 𝑐! are learning factors which will be fixed
through whole the process.

In order to improve the local search precision, Eberhart
(2001) added the inertia weight w to equation 18 to be
as following equation.

𝑣 𝑘 + 1 = 𝑤𝑣 𝑘 + 𝑐!𝑅! 𝑝𝑏𝑒𝑠𝑡 − 𝑠! 𝑘 + 𝑐!𝑅! 𝑔𝑏𝑒𝑠𝑡 −

𝑠! 𝑘 (19)

The inertia weight controls the momentum of the
particle by weighing the contribution of the previous
velocity.

Chatterjee (2006) suggested a dynamic change of
inertia weight in his work.

Clerc (1999) indicates that the use of a constriction
factor K may also be necessary to ensure convergence
of the particle swarm algorithm, defined as when all
particles have stopped moving. Then the velocity is
calculated by the equation:

𝑣 𝑘 + 1 = 𝐾[𝑣 𝑘 + 𝑐!𝑅! 𝑝𝑏𝑒𝑠𝑡 − 𝑠! 𝑘 + 𝑐!𝑅! 𝑔𝑏𝑒𝑠𝑡 −

𝑠! 𝑘] (20)
𝐾 = !

!! !! !!!!!
 (21)

Where 𝜑 = 𝑐! + 𝑐! and 𝜑 > 4.
Then the new position for the particles is the

addition of the position at k iteration and the distance
that the particles will fly with the new velocity 𝑣 𝑘 + 1 .
The position is updated by equation 22.

𝑠! 𝑘 + 1 = 𝑠! 𝑘 + 𝑣 𝑘 + 1 (22)

The flow chart of a general PSO algorithm is shown
in (figure 5).

Figure 5: flow chart of general PSO algorithm

Path Planning using PSO:
One of the main applications of PSO is the path

planning. PSO has been applied massively for path
planning intensely in robots (Chen X 2006 and
Nasrollahy 2009).

In the boids model, PSO can be applied to the flock
leader, to plan and smooth his path. For this purpose; we
have used PSO algorithm to plan the path to the target
(i.e. food source). We have used the Euclidian distance
between the particle and the target as a fitness function
in the PSO.

In PSO for path planning, the inertia weight w is
calculated according to the next equation.

𝑤 = 𝑤!"#$" −

!!"#$"!!!"#

!
 𝑘 (23)

Where, K is the iteration maximum number and k is the
current iteration. By linearly decreasing the inertia
weight from a relatively large value to a small value, the
PSO tends to have more global search ability at the
beginning of the run while having more local search
ability near the end of the run.

As in robot’s applications, PSO gives advantages to
the path planning particularly in the dynamics
environment containing stationary and moving
obstacles.

We have used the parameters in (Table 2) for the
PSO. In case of facing obstacles; the leader is looking to
his target, if there is an obstacle whose obscures the
target and the distance to this obstacle is less than a
threshold, the leader will change his direction randomly
to his right or his left by 45-degrees angle.

Swarm size 20
Dimension of the problem 2
Maximum iteration 100
c1 (cognitive parameter) 2
c2 (social parameter) 2
C (constriction factor) 1
Inertia start 0.9
Inertia end 0.4
Upper limit on optimisation variables 100
Lower limit on optimisation variables -100

Table 2: PSO parameters for path planning

(a)

(b)

Figure 6: PSO for path planning without obstacles (a) and with
an obstacle (b).

PSO for optimisation of moving vector in boids model:
As in GA for optimisation of the moving vector in the

boids model, we have applied PSO to find the optimum
coefficients for the moving vector (𝑉!) in equation 9 for
each boid (𝑏!). We have used the same cost function as
in equations from 12 to 17. We have used the PSO as
explained in (Kennedy, 1995).

Population size 20
Dimension of the problem 4
Maximum iteration 100
c1 (cognitive parameter) 2
c2 (social parameter) 2
C (constriction factor) 1
Inertia start 0.9
Inertia end 0.4
Upper limit on optimisation variables 1
Lower limit on optimisation variables 0

Table 3: PSO parameters

We have used the parameters in (Table 3) and we have
used equation 23 to calculate the Inertia. We will
analyse the results in next section.

THE EXPERIMENT RESULTS

For testing the boids model without/with the GA and
PSO, we have made a fish school in Unity3D. we have
used a ready fish boid from unity website to have a nice
fish shape with some animations such as moving the
fish tail. The fish school has 50 fish (figure 7a). Firstly
we have implemented the boids model as in equation 8
with excluding the random steering, and then we added
the random steering and the leader factor. Figure
7(b,c,d) shows the simulation from different efforts. It
was observed that the model need time to have a nice
flocking shape with/without random movement. And
the random movement was important to avoid obstacles
since we didn’t have a separate steering behaviour for
avoiding the obstacles. The simulation of a fish school
depends on the boids model as in equation 8 with equal
weight coefficients gives a good flocking shape but the
model was slow to get the nice flocking shape.

(a)

(b)

(c)

(d)

Figure 7: (a) Fish school system (b) the boids simulation
without random movement after few frames from the start (c)
the boids simulation with random movement (d) the boids
simulation with random movement and adding leader factor
and some obstacles.

Using the GA for optimisation the moving vector by
finding the optimal coefficients, made the school of fish
getting the nice flock shape sooner, but its very
computational costly. The frame rate went down from
more than 30 frames per second to almost 3 frames per
second (this depends on the parameters of GA). And it
is noticeable that after passing the start time and having
the flock shape, there is no noticeable difference
between the original boids model and the boids model

with GA. Figure 8(a) shows a screen shot from the
simulation with GA.

(a)

(b)

Figure 8: The boids simulation with (a) GA, and (b) PSO

PSO was faster than GA, and gave more noticeable
results as shown in (figure 8(b)). It is observed that the
boids get the flock shape faster and even the flock
behaviour is look nicer than before.

We depend on our observation of the simulation
results to do the comparison between the different
models, because each simulation/run is different from
other simulations/runs and it depends on the starting
positions and the random numbers. We have selected
the same population size and the number of iterations
for both GA and PSO algorithms. The other parameters
in GA, were selected by running the GA on many
standard optimisation problems and from the literature
(Haupt, 2003). The other parameters in PSO algorithm,
were selected from the literature and the path planning
algorithm. These parameters are selected to have a good
convergence. The cost function or the objective fuction
in general should be connected to the type of simulation.
In our experiment, the objective function is to have nice
fish school behaviour.

CONCLUSIONS AND FUTURE WORK

The boids model is often used in computer graphics
to provide realistic life-look representations of the
aggregate motion. For instance, many animations
require natural-looking behaviour from a large number
of characters (boids). The aggregate motion of the group
is the result of the interaction of the individuals, so let
each individual generate its own motion, this is easier
and produces natural and unscripted motion. The
individual’s moving is calculated by combining all the
steering behaviour vectors. To have a natural behaviour
in different environments, the boid’s movements should
be optimised and adapted. GA and PSO algorithm are
used to optimise a generic boids model by optimising
the coefficients of the moving vector to minimise the
cost function.

The challenge is to write rules to define natural
behaviours. In the boids model, we have defined the
cost function which is divided into five parts. These
parts are related to the steering behaviours in the model.
Thus the cost function reflects how the fish school
should look in the nature. Our cost function is not
computationally costly and measures simply the boids

behaviour. The cost function (objective function) should
be connected to type-of-problem we want to solve, and
reflects how we want the flock/swarm to behave. The
setting of moving vector coefficients is determined by
the cost function. We use GA and PSO to find the best
coefficients values (waights of the behaviours rules) to
minimise the cost function which reflects the wanted
behaviour.

GA and PSO have many similarities and both of
them use population-based approaches. GA is known as
a good algorithm to find the global optimal solution
where is PSO could stuck in the local optimum. But
PSO has advantage over GA concerning the time. In the
boids model, where we have adaptive boids in a
dynamic environment, we are interested in a nice
flocking behaviour (convergence) as in nature, and in
time consuming. From the experiments for both GA and
PSO, we observed that PSO is much faster than GA, and
gives a faster convergence, and because the PSO is
computationally less costly than GA, we could notice
the convergence more in PSO than GA.

The challenge is to balance between the convergence
(nice flocking behaviour and the adaptively) and the
time consuming. Having more advanced cost function
probably will give better results, but it will be very
expansive and lead to a very slow model. Applying the
optimisation algorithm not continuously such as
applying the optimisation algorithms for only some
parts of the simulation such as at beginning of the
simulation until the boids get a nice flock shape which
is wanted, or when the boids facing obstacles or
enemies, will accelerate the model.

REFERENCES

Anthony L. (2002), “Artificial life”, Macmillan Press Ltd.,
Basingstoke, UK.

Chatterjee A., Siarry P. (2006), “Nonlinear inertia weight
variation for dynamic adaptation in particle swarm
optimisation”, Computer & Operations Research 33, 859-
871.

Chen, Y.-W.; Kobayashi, K.; Huang, X. & Nakao, Z. (2006),
“Genetic Algorithms for Optimization of Boids Model”, in
Bogdan Gabrys; Robert J. Howlett & Lakhmi C. Jain, ed.,
'KES (2)' , Springer, , pp. 55-62 .

Chen X.; Yangmin L. (2006), “Smooth Path Planning of a
Mobile Robot Using Stochastic Particle Swarm
Optimization”, Mechatronics and Automation,
Proceedings of the 2006 IEEE International Conference
on , vol., no., pp.1722,1727, 25-28.

Clerc M. (1999), “The swarm and the queen: towards a
deterministic and adaptive particle swarm optimization”,
in Proceedings of the Congress of Evolutionary
Computation, Washington, DC, pp. 1951-1957.

Cui Z., Shi Z. (2009), “Boid particle swarm optimisation”,
International Journal of Innovative Computing and
Applications 2 (2): 77–85.

Delgado M. C., Ibanez J., Bee S., et al. (2007), “On the use of
Virtual Animals with Artificial Fear in Virtual
Environments”, New Generation Computing 25 (2): 145–
169.

Docs.unity3d.com (2014), Unity - Getting started with Mono
Develop. [ONLINE] Available at:

http://docs.unity3d.com/Documentation/Manual/HOWTO-
MonoDevelop.html. [Accessed 31 January 2014].

Eberhart R., Shi Y. (2001), “Tracking and optimizing
dynamic systems with particle swarms”, Proc. Congress
on Evolutionary Computation 2001, Seoul, Korea

Fogel D. (2000), “Evolutionary Computation: Towards a New
Philosophy of Machine Intelligence”, IEEE Press, New
York.

Hartman C., Benes B. (2006), “Autonomous boids”, Computer
Animation and Virtual Worlds 17 (3-4): 199–206.

Haupt R., Haupt S.(2003), “Practical Genetic Algorithms”, 2nd
Ed, Wiley, 2003.

Holland J. (1975), “Adaptation in Natural and Artificial
Systems”, Ann Arbor: University of Michigan Press.

Ice', S. and Malone, L. (2014), “Stanley and Stella in
'Breaking the Ice' (1987)”, [online] Available at:
http://www.imdb.com/title/tt0302371/ [Accessed: 31 Jan
2014].

Kennedy J., Eberhart R. (1995), “Particle Swarm
Optimisation”, Proceedings of IEEE International
Conference on Neural Networks IV. pp. 1942–1948.

Nasrollahy, A.Z.; Javadi, H. (2009), “Using Particle Swarm
Optimization for Robot Path Planning in Dynamic
Environments with Moving Obstacles and Target”,
Computer Modeling and Simulation, 2009. EMS '09. Third
UKSim European Symposium on , vol., no., pp.60,65, 25-
27.

Returns, B., Burton, T., Kane, B., Waters, D., Keaton, M.,
Devito, D. and Pfeiffer, M. (2014), “Batman Returns
(1992)” IMDb, [online] Available at:
http://www.imdb.com/title/tt0103776/ [Accessed: 31 Jan
2014].

Reynolds C. (1987), “ Flocks, Herds, and Schools: A
Distributed Behavioural Model”, Computer Graphics,
21:4,1987, 25-34.

Reynolds C. (1999), “ Steering behaviour for autonomous
characters”, http://www.red3d.com/cwr/steer/, first version
from 1999.

Unity3d.com (2014), Unity - Game Engine. [ONLINE]
Available at: http://www.unity3d.com. [Accessed 31
January 2014].

Valvesoftware.com (2014), Valve. [ONLINE] Available at:
http://www.valvesoftware.com/. [Accessed 31 January
2014].

Zhang C., Shao H., Li Y. (2000), “Particle Swarm
Optimisation for Evolving Artificial Neural Network”, In
the 2000 IEEE International Conference on Systems, Man,
and Cybernetics, vol.4, pp.2487-2490.

AUTHOR BIOGRAPHIES

SALEH ALALIYAT was born in Jenin, Palestine. He
is currently working as a PhD candidate at Aalesund
University College, Norway. He received his Master’s
degree in Media Technology from Gjøvik University
College in Norway.

HARALD YNDESTAD was born in Aalesund,
Norway. He has studied cybernetics at the University in
Trondheim, obtained a dr.philos degree in 2004 and he
is now professor at Aalesund University College. His
research interests are complex systems, swarm
intelligence and ecosystem dynamics.

FILIPPO SANFILIPPO is a PhD candidate in
Engineering Cybernetics at the Norwegian University of
Science and Technology, and a research assistant at the
Department of Maritime Technology and Operations,
Aalesund University College, Norway. He obtained his
Master's Degree in Computer Engineering at University
of Siena, Italy.

