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ABSTRACT 

In this paper, we present two optimisation methods 
for a generic boids swarm model which is derived from 
the original Reynolds’ boids model to simulate the 
aggregate moving of a fish school. The aggregate 
motion is the result of the interaction of the relatively 
simple behaviours of the individual simulated boids1. 
The aggregate moving vector is a linear combination of 
every simple behaviour rule vector. The moving vector 
coefficients should be identified and optimised to have a 
realistic flocking moving behaviour. We proposed two 
methods to optimise these coefficients, by using genetic 
algorithm (GA) and particle swarm optimisation 
algorithm (PSO). Both GA and PSO are population 
based heuristic search techniques which can be used to 
solve the optimisation problems. The experimental 
results show that optimisation of boids model by using 
PSO is faster and gives better convergence than using 
GA.  

INTRODUCTION 

Many animals in the nature move in groups: fish 
swim in schools, birds fly in flocks, sheep move in 
herds, insects move in swarm and ants distribute to find 
a food source and then all ants follow path to the food. 
Simulating the aggregate motion is an important issue in 
the areas of artificial life and computer animation and in 
a lot of their applications such as games and movies. 
Reynolds (1987) proposed a first computer model of 
group animal motion such as fish schools and bird 
flocks. He called his model as “boids model”, where 
boids refer to the generic flocking simulated creatures. 
The aggregate moving of the simulated boids is the 
result of the interaction of the relatively simple 
behaviours of the individual simulated boid. An 
interesting look at boids can be taken from the 
perspective of artificial life where is the holistic 
emergent phenomena is the result of interactions of 
independent entities (Anthony 2002). The boids model 
has three simple rules applied to the boids. The rules 
are: each boid move to avoid crowding with its 

                                                             
1 Boids are bird-like objects that were developed in the 1980s to model flocking 
behaviour. 

neighbours, match and coordinate its movements with 
its neighbours, and move to gather with the others. 
Other rules such as avoiding obstacles and goal seeking 
have been included in steering behaviour model 
(Reynolds, 1999) and in many simulations based on 
boids model later on. For instance, Delgado (2007) 
extended the basic boids model to include the effects of 
fear. Olfaction was used to transmit emotion between 
animals, through pheromones modelled as particles in a 
free expansion gas. Hartman and Benes (2006) added a 
complementary force to the alignment (steer towards the 
average heading of neighbours) that they call the change 
of leadership. This steer defines the chance of the boid 
to become a leader and try to escape. 

After 1987, the boids model is often used in 
computer graphics to provide realistic life-look 
representations of the aggregate motion of groups. For 
instance, in the 1998 Valve Video Game Company has 
used boids model in Half-Life video game for the flying 
bird-like creatures (Valvesoftware.com 2014). The 
boids model represented an enormous step forward 
compared to the traditional techniques used in computer 
animation for motion pictures. The first animation 
created with the boids model was in the computer 
animation shot film called Stanley and Stella in: 
Breaking the Ice in 1987 (Ice' and Malone, 2014). After 
that, the boids model was used in a feature film 
introduction of Batman Returns in 1992 (Returns and 
Burton et al., 2014). Then the boids model has been 
used in many games and films and in many other 
interesting applications.  

In the boids swarm model, each rule is represented 
by a vector. The vector by its two components 
(magnitude and direction) is adaptive to the 
environment. The boid moving vector is a linear 
combination of every behaviour rule vector.  The setting 
of the moving vector coefficients becomes more 
difficult by increasing more behaviour rules. These 
coefficients should be determined and optimised to have 
a realistic moving behaviour. In this context, we use two 
optimisation algorithms to optimise the boids model by 
finding the best coefficients values and combination in 
order to minimise the objective function. Firstly, we 
propose a GA to optimise the coefficients in a generic 
boids model. Secondly we substitute the GA by PSO to 
optimise the coefficients in the same generic boids 
model and use PSO to find food sources. Then we do a 
comparison of these two models by focusing on the 
advantages and disadvantages of each algorithm.  



 

THE BOIDS MODEL 

In 1986, Reynolds has developed the boids model. 
His published paper about the boids model (Reynolds 
1987) was cited so many times and extended in so many 
different ways.  Many of the extensions present 
additional rules to the boids, some describe constrained 
solution, some tend to easy solutions usable in computer 
games, some extend the previous work in spite of 
computational complexity, etc.  

Reynolds (1987) describes the flock behaviour2 as a 
result of the motion and the interaction of boids. Each 
boid has three simple rules of steering behaviours that 
describe how an individual boid move based on the 
positions and velocities of its flock mates (social 
reaction). 

• Separation (figure 1(a)): each boid keep a 
distance from other boids nearby to avoid 
collision and prevent crowding.  

• Alignment (figure 1(b)): each boid match the 
direction and the speed of its neighbours. This 
rule causes boids to follow each other. 

• Cohesion (figure 1(c)): each boid tends to move 
to the average position of its neighbours. 

 
(a) 

 
(b) 

 
(c) 

 
(a) Separation rule 
(b) Alignment rule 
(c) Cohesion rule 

Figure 1: The boids social rules (Reynolds 1987). 

Reynolds (1999) has extended the boids model to 
include more individual-based rules of the steering 
behaviours, to have more advanced individuals which 
are capable to finish specific task or adapt to complex 
environments. Some of these behaviours are: 

• Obstacle avoidance (figure 2(a)): The obstacle 
avoidance behaviour allows the boids move in 
cluttered environment by dodging around 
obstacles.  

• Leader following (figure 2(b)):  this behaviour 
causes one or more boids to follow another 
moving boid selected as a leader.   

                                                             
2 We mean by Flock behaviour in this paper as behaviour of flock, school, herd 
and swarm.  

  
(a) 

 
(b) 

Figure 2: Steering behaviours rules (a) Obstacle avoidance (b) 
leader following(Reynolds 1999). 

Based on Reynolds model, we have implemented a 
generic boids swarm model in Unity3D (Unity3d.com 
2014), the program is written in MonoDevelop Unity- 
C# (Docs.unity3d.com 2014). The aim is to develop a 
generic model that can be used in simulating the 
aggregate motion for flocks of birds, schools of fish or 
herds of animals. The model has five rules: 

• Cohesion: steer to move toward the average 
position of local flock mates (as in the original 
Reynolds’ model). By applying cohesion rule 
keeps the boids together. This rule acts as the 
complement of the separation.  If only cohesion 
rule is applied, all the boids in the flock will 
merge into one single position. Cohesion (𝐶𝑜ℎ!) 
of the boid (𝑏!) is calculated in two steps. First, 
the center (𝐹𝑐!) of the flock (𝑓) that has this boid 
is calculated as in equation 1. Then the tendency 
of the boid to navigate toward the center of 
density of the flock is calculated as the cohesion 
displacement vector as in equation 2.  

𝐹𝑐! =
!!
!∀!!∈!                                      (1) 

     Where, 𝑝!  is the position of boid j and N is the 
total number of boids in 𝑓 

        𝐶𝑜ℎ!!𝐹𝑐! −   𝑝!                                      (2) 

• Alignment: steer to match the heading and the 
speed of its neighbours. This rule tries to make 
the boids mimic each other’s course and speed. 
Boids tend to align with the velocity of their 
flock mates. The alignment (𝐴𝑙𝑖!) is calculated in 
two steps. First, the average velocity vector of 
the flock mates (𝐹𝑣!) is calculated by equation 3. 
Then 𝐴𝑙𝑖! is calculated as the displacement vector 
in equation 4. 

𝐹𝑣! =
!!
!∀!!!"                                     (3) 

        𝐴𝑙𝚤!!𝐹𝑣! −   𝑣!                                      (4) 

         Where 𝑣! is the velocity vector of boid i 
     If this rule was not used, the boids would bounce 

around a lot and not form the beautiful flocking 
behaviour that can be seen in the nature. 

• Separation: steer to avoid collection and 
overcrowding with other flock mates. There are 
many ways to implement this rule. An efficient 
solution to calculate the separation (𝑆𝑒𝑝!) is by 
applying equation 5. Vectors defined by the 



 

position of the boid 𝑏!  and each visible boid 𝑏!  are 
summed, then separation steer (𝑆𝑒𝑝!) is calculated 
as the negative sum of these vectors. 

𝑆𝑒𝑝! = − 𝑝! − 𝑝!∀!!!"                           (5) 

      If only the separation rule is applied, the flock 
will dissipate. 

• Leader following: steer to follow another moving 
boid selected as a leader (𝑝!). The leader 
following (𝐿𝑒𝑑!) is calculated by equation 6.     

𝐿𝑒𝑑! = 𝐿 ∗ 𝑝! − 𝑝!                                 (6) 

     Where 𝐿 is a leader strength factor. (Note: the 
moving vector (velocity) has limits, minimum 
and maximum). 

• Random movement: this rule is added to have 
more realistic flock behaviour. This rule is 
depending on the random number generator 
inside the game engine (Unity3D). The random 
movement (𝑅𝑎𝑛𝑑!) is calculated as in equation 7.      

𝑅𝑎𝑛𝑑! = −𝑓𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑟                         (7) 

Where 𝑟 is a unit sphere random vector and 
𝑓𝑓𝑎𝑐𝑡𝑜𝑟 is a flock random strength factor. 

Then the moving vector (𝑉!) is for boid (𝑏!) is 
calculated by combining all the steering behaviour 
vectors as in equation 8. 

𝑉! =       𝑤!  𝐶𝑜ℎ! +   𝑤!  𝐴𝑙𝚤!   + 𝑤!𝑆𝑒𝑝!   +   𝑤!𝐿𝑒𝑑! +   𝑤!𝑅𝑎𝑛𝑑!      (8) 

Where 𝑤! are the coefficients describing influences of 
each steering rule and used to balance the five rules. 

We have used the Unity3D to implement the boids 
model to get the benefits of using a game engine. The 
first benefit is the amazing visualisation that we get in 
Unity3D. So we skip wasting time to model and 
program the boid’s shape and its geometry. In Unity3D, 
it is easy to build a boid such as a bird, a fish or a sheep 
and attach some life-look animation to it, or import the 
3D model of the boid from other programs and attach a 
built in animation to it or program the animation from 
the scratch. In this model we exploit the collision 
detection component in Unity3D game engine to avoid 
the obstacles. Each obstacle has a physic’s collision 
component that doesn’t let other objects to move 
through the collision bounds (obstacle’s space). In 
another words, the obstacles will be excluded from the 
boids flocking space. We will show the results in the 
experimental results section. 

GENETIC ALGORITHMS FOR OPTIMISATION 
OF BOIDS MODEL 

In this section, we will give an overview of GA in 
general and some examples of its applications. Then we 
present our proposed model (GA for optimisation of 
boids model). 

Genetic Algorithm: 
     Genetic algorithm (GA) is an optimisation and 
search technique based on the principles of genetic and 
natural selection (Haupt, 2003). A GA allows a 
population composed of many individuals to evolve 
under specified selection rules to a state that maximise 
the fitness (i.e., minimizes the cost function). Genetic 
algorithms (GAs) were invented by John Holland in 
1960s and were developed by him and his students in 
1960s and 1970s. Holland (1975) presented the GA as 
an abstraction of biological evolution and gave a 
theoretical framework for adaptation under GA. 

GA belong to the larger class of evolutionary 
algorithms, which generate solutions to optimization 
problems using techniques inspired by natural evolution 
such as selection (reproduction), crossover 
(recombination) and mutation. The evolution process 
starts from a population of individuals generated 
randomly within the search space and continues for 
generations. In each generation, fitness of every 
individual is evaluated, and multiple individuals are 
randomly selected from the current population based on 
their fitness and modified by recombination and 
mutation operation to form a new population. Then this 
new population will be used for the next generation of 
the evolution. In general, the search process ends when 
either a maximum number of generations have been 
produced or a fitness level has been reached for the 
population. The flowchart of GA is shown in (figure 3). 

 

 
Figure 3: Flowchart of GA 

In a GA, it’s necessary to be able to evaluate how 
good a potential solution is relative to other potential 
solutions. The fitness function is responsible for 
performing this evaluation and returning a fitness value 
(positive integer number) that reflects how optimal the 
solution is. The fitness function is associated with the 
objective function of the problem. The fitness value of 
the individual is used to determine the probability with 
which the individual is selected into the new population. 
A common metaphor for the selection process is a 
roulette wheel selection (Fogel, 2000).  

Traditional methods of search and optimization are 
too slow in finding a solution in a very complex search 
space. GA is a robust search method requiring little 
information to search effectively in a large or poorly 
understood search space. In particular a genetic search 



 

progress through a population of points in contrast to 
the single point of focus of most search algorithms. 
Moreover, it is useful in the very tricky area of 
nonlinear problems. GAs have been used to solve 
optimisation problems in different fields such as 
automotive design, engineering design, robotics, 
optimised routing, games, etc. Chen (2006) has applied 
GAs to optimise the behaviour of a school of fish. 

 
GA for optimisation of moving vector in the boids 
model:   

The moving vector (𝑉!) in equation 8 for each boid 
(𝑏!) is a combination of all the five steering behaviour 
vectors. And the movements are balanced by the 𝑤! 
weight coefficients, so these coefficients should be 
optimized to have realistic and life-look behaviour. We 
have removed the random steering behaviour in the 
moving vector to exclude the random movements for 
the boids. The new moving vector is: 

𝑉! =       𝑤!  𝐶𝑜ℎ! +   𝑤!  𝐴𝑙𝚤!   + 𝑤!𝑆𝑒𝑝!   +   𝑤!𝐿𝑒𝑑!               (9) 

 We have used GA to optimise these coefficients and 
getting the benefit from using GA for parameters 
optimisation and finding a global optimum solution. The 
goal is to find the optimal solutions in terms of the 
variables (coefficients). Thus we should define 
mathematically what is the optimal solution. We begin 
the GA by defining the chromosome. The chromosome 
is an array of the coefficients values that will be 
optimised. In this case the chromosome has four 
variables and is written as a four-element row vector. 

𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 = 𝑤!,𝑤!,𝑤!,𝑤!                            (10) 

Then we should formulate the cost function that gives a 
cost for each chromosome. 

𝑐𝑜𝑠𝑡 = 𝑓(𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒) = 𝑓(𝑤!,𝑤!,𝑤!,𝑤!)           (11) 

  In our case, the optimal solution is to have life-look 
flock behaviour. Measuring the flock behaviour can be 
very complicated process, expensive computationally 
and then time consuming.  Since the purpose of this 
paper is to build a generic boids model and optimise it 
by different optimisation methods, we suggest a simple 
cost function. In the flowing, we explain the proposed 
cost function which is divided into five parts. 

 
• Related to the alignment rule: The divergence 

between the direction of the boid and the average 
direction of the flock should be minimised. The 
divergence is the angle 𝜃    between the boid 
velocity vector 𝑣!  and the average flock velocity 
vector. 

𝑐𝑜𝑠𝑡! = 𝜃                                                     (12) 

• Related to the leader following rule: The 
divergence between the direction and the 
distance of the boid and the direction and the 
distance of the leader should be minimised.  

𝑐𝑜𝑠𝑡! = 𝑑                                                    (13) 

Where d is the distance between 𝑝!   and 𝑝! 
𝑐𝑜𝑠𝑡! = 𝛼                                                    (14) 

Where 𝛼 is the angle between the boid velocity 
vector 𝑣!  and the leader velocity vector. 
 

• Related to the separation and cohesion rules: The 
boids distribution should be optimised to avoid 
crowding or losing contact and having nice 
flocking. To do this; we calculate the distance 
between the boid and the flock center first 𝑑!. 
Then we check all the boids, if they are nearby 
(<keepd) or far enough (>keepd).  
 
If ( 𝑝! − 𝑝! ≤ 𝑘𝑒𝑒𝑝𝑑), 

𝑐𝑜𝑠𝑡! = 𝑑! ∗
!!!!! !!""#$

!

!""#$!∀!!!"                                (15) 
 
But for the far boids,  
If ( 𝑝! − 𝑝! > 𝑘𝑒𝑒𝑝𝑑)  

𝑐𝑜𝑠𝑡! = 𝑑! ∗
!!!!! !!""#$

!

!!!!""#$ !∀!!!"                         (16) 

Then the cost is: 
𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡! +   𝑐𝑜𝑠𝑡! + 𝑐𝑜𝑠𝑡! + 𝑐𝑜𝑠𝑡! + 𝑐𝑜𝑠𝑡!        (17) 

We have used the continuous GA as explained in 
(Haupt, 2003). We used the parameters in (Table 1). We 
will analyse the results in experiment results section. 

 
Number of optimisation variables 4 
Upper limit on optimisation variables 1 
Lower limit on optimisation variables 0 
Maximum iteration 100 
Minimum cost 0 
Population size  20 
Mutation rate 0.2 
Selection rate 0.5 

Table 1: GA parameters 

PARTICLE SWARM OPTIMISATION OF BOIDS 
MODEL 

      In this section, we will give an overview of PSO 
algorithm in general and some examples of its 
applications. Then we present our proposed model (PSO 
for optimisation of boids model). 

Particle Swarm Optimisation: 
PSO is a computational method that optimises a 

problem by iteratively trying to improve a candidate 
solution with regard to a given measure of quality. 
Kennedy and Eberhart introduced PSO in 1995 
(Kennedy, 1995). PSO was originally used to solve non-
linear continuous optimization problems, but more 
recently it has been used in many practical, real-life 
application problems. For example, PSO has been 
successfully applied to track dynamic systems 
(Eberhart, 2001) and evolve weights and structure of 
neural networks (Zhang, 2000). PSO draws inspiration 
from the sociological behaviour associated with bird 
flocking. It is a natural observation that birds can fly in 
large groups with no collision for extended long 
distances, making use of their effort to maintain an 
optimum distance between themselves and their 
neighbours.  

Cui  (2009) has developed a hypried PSO and boids 
model (Boids-PSO), where cohesion rule and alignment 



 

rule are both employed to improve the PSO algorithm 
for boids simulation and to overcome the weekness of 
biological background of PSO. But in our case we use 
PSO as an optimisation technique to optimise the 
coefficients in the moving vector.    

The PSO methodology operates by placing a group 
of individual particles into a continues search space, 
wherein each particle is initialised with a random 
position and a random initial velocity in the search 
space. The position and velocity are updated 
synchronously in each iteration of the algorithm. Each 
particle adjust its velocity according to its own flight 
experience and the other’s experience in the swarm in 
such a way that it accelerates towards positions that 
have high fitness values in previous iterations. In other 
words, each particle keeps track of its coordinates in the 
solution space that are associated with the best solution 
that has achieved so far by its self. This value is called 
personal best (pbest), Another best value that is tracked 
by the PSO is the best value obtained so far by any 
particle in the neighbourhood of that particle. This value 
is called (best). So the basic concept of PSO lies in 
accelerating each particle toward its pbest and the gbest 
locations, with a random weighted acceleration at each 
time step as shown in (figure 4). 

 

 

 
sk :  current searching point. 
sk+1: modified searching point.   
vk: current velocity. 
vk+1: modified velocity.   
vpbest : velocity based on pbest. 
vgbest : velocity based on gbest 

 

Figure 4: Concept of particle position modification by PSO 

The modification of the particle’s position can be 
mathematically modelled according to equation 18. 

𝑣 𝑘 + 1 =   𝑣 𝑘 + 𝑐!𝑅! 𝑝𝑏𝑒𝑠𝑡   − 𝑠! 𝑘 +   𝑐!𝑅! 𝑔𝑏𝑒𝑠𝑡   − 𝑠! 𝑘   

(18) 

Where, 
 𝑣 𝑘  is the velocity of a particle at iteration k. 
 𝑅! and 𝑅! are random numbers in the range of  [0,1] 
with the same size of the swarm population. 
𝑐! and 𝑐! are learning factors which will be fixed 
through whole the process. 

In order to improve the local search precision, Eberhart 
(2001) added the inertia weight w to equation 18 to be 
as following equation. 

𝑣 𝑘 + 1 =   𝑤𝑣 𝑘 + 𝑐!𝑅! 𝑝𝑏𝑒𝑠𝑡   − 𝑠! 𝑘 +   𝑐!𝑅! 𝑔𝑏𝑒𝑠𝑡   −

𝑠! 𝑘           (19) 

The inertia weight controls the momentum of the 
particle by weighing the contribution of the previous 
velocity. 

Chatterjee (2006) suggested a dynamic change of 
inertia weight in his work. 

Clerc (1999) indicates that the use of a constriction 
factor K may also be necessary to ensure convergence 
of the particle swarm algorithm, defined as when all 
particles have stopped moving. Then the velocity is 
calculated by the equation:  

𝑣 𝑘 + 1 =   𝐾[𝑣 𝑘 + 𝑐!𝑅! 𝑝𝑏𝑒𝑠𝑡   − 𝑠! 𝑘 +   𝑐!𝑅! 𝑔𝑏𝑒𝑠𝑡   −

𝑠! 𝑘 ]               (20) 
𝐾 =    !

!!  !!   !!!!!
                               (21) 

Where 𝜑 =    𝑐! + 𝑐!  and 𝜑 > 4. 
Then the new position for the particles is the 

addition of the position at k iteration and the distance 
that the particles will fly with the new velocity 𝑣 𝑘 + 1 . 
The position is updated by equation 22. 

𝑠! 𝑘 + 1 =    𝑠! 𝑘 + 𝑣 𝑘 + 1                  (22) 

The flow chart of a general PSO algorithm is shown 
in (figure 5). 

 
Figure 5: flow chart of general PSO algorithm 

Path Planning using PSO: 
One of the main applications of PSO is the path 

planning. PSO has been applied massively for path 
planning intensely in robots (Chen X 2006 and 
Nasrollahy 2009). 

In the boids model, PSO can be applied to the flock 
leader, to plan and smooth his path. For this purpose; we 
have used PSO algorithm to plan the path to the target 
(i.e. food source). We have used the Euclidian distance 
between the particle and the target as a fitness function 
in the PSO. 

In PSO for path planning, the inertia weight w is 
calculated according to the next equation.    

 
𝑤 = 𝑤!"#$" −   

!!"#$"!!!"#

!
  𝑘                             (23) 



 

Where, K is the iteration maximum number and k is the 
current iteration. By linearly decreasing the inertia 
weight from a relatively large value to a small value, the 
PSO tends to have more global search ability at the 
beginning of the run while having more local search 
ability near the end of the run.  

As in robot’s applications, PSO gives advantages to 
the path planning particularly in the dynamics 
environment containing stationary and moving 
obstacles.  

We have used the parameters in (Table 2) for the 
PSO. In case of facing obstacles; the leader is looking to 
his target, if there is an obstacle whose obscures the 
target and the distance to this obstacle is less than a 
threshold, the leader will change his direction randomly 
to his right or his left by 45-degrees angle.  

 
Swarm size 20 
Dimension of the problem 2 
Maximum iteration 100 
c1 (cognitive parameter) 2 
c2 (social parameter) 2 
C (constriction factor) 1 
Inertia start 0.9 
Inertia end 0.4 
Upper limit on optimisation variables 100 
Lower limit on optimisation variables -100 

Table 2: PSO parameters for path planning 
 

 
(a) 

 
(b) 

Figure 6: PSO for path planning without obstacles (a) and with 
an obstacle (b). 

PSO for optimisation of moving vector in boids model: 
As in GA for optimisation of the moving vector in the 

boids model, we have applied PSO to find the optimum 
coefficients for the moving vector (𝑉!) in equation 9 for 
each boid (𝑏!). We have used the same cost function as 
in equations from 12 to 17.  We have used the PSO as 
explained in (Kennedy, 1995).  

 
Population size 20 
Dimension of the problem 4 
Maximum iteration 100 
c1 (cognitive parameter) 2 
c2 (social parameter) 2 
C (constriction factor) 1 
Inertia start 0.9 
Inertia end 0.4 
Upper limit on optimisation variables 1 
Lower limit on optimisation variables 0 

Table 3: PSO parameters 

We have used the parameters in (Table 3) and we have 
used equation 23 to calculate the Inertia. We will 
analyse the results in next section. 

THE EXPERIMENT RESULTS 

For testing the boids model without/with the GA and 
PSO, we have made a fish school in Unity3D. we have 
used a ready fish boid from unity website to have a nice 
fish shape with some animations such as moving the 
fish tail. The fish school has 50 fish (figure 7a).  Firstly 
we have implemented the boids model as in equation 8 
with excluding the random steering, and then we added 
the random steering and the leader factor. Figure 
7(b,c,d) shows the simulation from different  efforts.  It 
was observed that the model need time to have a nice 
flocking shape with/without random movement. And 
the random movement was important to avoid obstacles 
since we didn’t have a separate steering behaviour for 
avoiding the obstacles. The simulation of a fish school 
depends on the boids model as in equation 8 with equal 
weight coefficients gives a good flocking shape but the 
model was slow to get the nice flocking shape. 
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Figure 7: (a) Fish school system (b) the boids simulation 
without random movement after few frames from the start (c) 
the boids simulation with random movement (d) the boids 
simulation with random movement and adding leader factor 
and some obstacles. 

Using the GA for optimisation the moving vector by 
finding the optimal coefficients, made the school of fish 
getting the nice flock shape sooner, but its very 
computational costly. The frame rate went down from 
more than 30 frames per second to almost 3 frames per 
second (this depends on the parameters of GA). And it 
is noticeable that after passing the start time and having 
the flock shape, there is no noticeable difference 
between the original boids model and the boids model 



 

with GA. Figure 8(a) shows a screen shot from the 
simulation with GA. 

 
(a) 

 
(b) 

Figure 8: The boids simulation with (a) GA, and (b) PSO 

PSO was faster than GA, and gave more noticeable 
results as shown in (figure 8(b)). It is observed that the 
boids get the flock shape faster and even the flock 
behaviour is look nicer than before.  

We depend on our observation of the simulation 
results to do the comparison between the different 
models, because each simulation/run is different from 
other simulations/runs and it depends on the starting 
positions and the random numbers. We have selected 
the same population size and the number of iterations 
for both GA and PSO algorithms. The other parameters 
in GA, were selected by running the GA on many 
standard optimisation problems and from the literature 
(Haupt, 2003). The other parameters in PSO algorithm, 
were selected from the literature and the path planning 
algorithm. These parameters are selected to have a good 
convergence. The cost function  or the objective fuction 
in general should be connected to the type of simulation. 
In our experiment, the objective function is to have nice 
fish school behaviour.   

CONCLUSIONS AND FUTURE WORK 

The boids model is often used in computer graphics 
to provide realistic life-look representations of the 
aggregate motion. For instance, many animations 
require natural-looking behaviour from a large number 
of characters (boids). The aggregate motion of the group 
is the result of the interaction of the individuals, so let 
each individual generate its own motion, this is easier 
and produces natural and unscripted motion. The 
individual’s moving is calculated by combining all the 
steering behaviour vectors. To have a natural behaviour 
in different environments, the boid’s movements should 
be optimised and adapted. GA and PSO algorithm are 
used to optimise a generic boids model by optimising 
the coefficients of the moving vector to minimise the 
cost function. 

The challenge is to write rules to define natural 
behaviours. In the boids model, we have defined the 
cost function which is divided into five parts. These 
parts are related to the steering behaviours in the model. 
Thus the cost function reflects how the fish school 
should look in the nature. Our cost function is not 
computationally costly and measures simply the boids 

behaviour. The cost function (objective function) should 
be connected to type-of-problem we want to solve, and 
reflects how we want the flock/swarm to behave. The 
setting of moving vector coefficients is determined by 
the cost function. We use GA and PSO to find the best 
coefficients values (waights of the behaviours rules) to 
minimise the cost function which reflects the wanted 
behaviour.  

GA and PSO have many similarities and both of 
them use population-based approaches. GA is known as 
a good algorithm to find the global optimal solution 
where is PSO could stuck in the local optimum. But 
PSO has advantage over GA concerning the time. In the 
boids model, where we have adaptive boids in a 
dynamic environment, we are interested in a nice 
flocking behaviour (convergence) as in nature, and in 
time consuming. From the experiments for both GA and 
PSO, we observed that PSO is much faster than GA, and 
gives a faster convergence, and because the PSO is 
computationally less costly than GA, we could notice 
the convergence more in PSO than GA.  

The challenge is to balance between the convergence 
(nice flocking behaviour and the adaptively) and the 
time consuming. Having more advanced cost function 
probably will give better results, but it will be very 
expansive and lead to a very slow model. Applying the 
optimisation algorithm not continuously such as 
applying the optimisation algorithms for only some 
parts of the simulation such as at beginning of the 
simulation until the boids get a nice flock shape which 
is wanted, or when the boids facing obstacles or 
enemies, will accelerate the model.    
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