
JIOP: A JAVA INTELLIGENT OPTIMISATION
AND MACHINE LEARNING FRAMEWORK

L. I. Hatledal, F. Sanfilippo, H. Zhang

Department of Maritime Technology and Operations
Aalesund University College

Postbox 1517, 6025 Aalesund, Norway

KEYWORDS

Optimisation methods; Machine learning; Object oriented
programming; Inverse kinematics

ABSTRACT

This paper presents an open source, object-oriented ma-
chine learning framework, formally named Java Intelligent
Optimisation (JIOP). While JIOP is still in the early stages
of development, it already provides a wide variety of general
learning algorithms that can be used.

Initially designed as a collection of existing learning meth-
ods, JIOP aims to emphasise commonalities and dissimilarities
of algorithms in order to identify their strengths and weak-
nesses, providing a simple, coherent and unified view. For
this reason, JIOP is suitable for pedagogical purposes, such
as for introducing bachelor and master degree students to the
concepts of intelligent algorithms.

The problems that JIOP aims to solve are initially dis-
cussed to demonstrate the need for such a framework. Later on,
the design architecture and the current functions of the frame-
work are outlined. As a validating case study, a real application
where JIOP is used to minimise the cost function for solving
the inverse kinematics (IK) of a KUKA industrial robotic arm
with six degrees of freedom (DOF) is also presented. Related
simulations are carried out to prove the effectiveness of the
proposed framework.

INTRODUCTION

Machine learning refers to the ability of a computer system,
or more generally, a machine, to learn from examples (Simon
2013). Essentially, this ability concerns the task of computing
a mathematical rule that generalises a relationship initially pro-
vided by a finite sample of real data, without being explicitly
programmed but by following some kind of training process.
This idea is based on the fundamental concepts of represen-
tation, evaluation and generalisation. Representation of data
instances and evaluation of the same instances by using some
kind of assessing function are essential steps for processing
the information carried out by the data. Generalisation is a
fascinating property that guarantees good system performance
on unseen data instances. The set of all possible outputs when
given all possible inputs is too large to be covered by the set
of observed data. Hence, the system must generalise from the
given set of examples, so as to be able to produce useful output
in new cases.

Machine learning is highly pervasive today and it is em-
ployed in a wide variety of tasks and successful applications in
several fields, such as computer vision, natural language pro-
cessing, pattern recognition, search engines, bio-informatics,
robotics, and more generally, for a wide variety of optimi-
sation processes. Optimisation problems often represent very
complex tasks and non-heuristic methods are greatly limited in
finding proper solutions (Pluhacek et al. 2013). A vast number
of different algorithms have already been presented in previous
literature and they can be classified into a taxonomy based on
the type of input available during the training process (Hormozi
et al. 2012). Supervised learning algorithms are trained on
labelled examples and and their main objective consists of
generating a function that maps inputs to desired outputs
(Kotsiantis et al. 2007). Unsupervised learning algorithms
operate on unlabelled examples and attempt to discover some
kind of structure in the data (Alpaydin 2004). Semi-supervised
learning combines both labelled and unlabelled examples to
generate an appropriate function or classifier (Zhu 2006).
Transduction methods try to predict new outputs based on spe-
cific and fixed test cases from observed specific training cases
(Alpaydin 2004). Reinforcement learning is concerned with
learning how to act given an observation of the environment
to maximise some notion of reward (Alpaydin 2004). Learning
to learn is a model of inductive bias learning based on previous
experience (Evgeniou & Pontil 2004).

These machine learning algorithms are often quite complex
to implement from scratch and to use properly and efficiently
for students, especially considering the limited amount of time
that they can spend on this task during their bachelor or master
courses of study. As such, it would be very useful to dispose
of some kind of developing tool that is easy to use and at the
same time gives students a chance to experience the benefit of
using machine learning algorithms in practical applications. In
particular, a software framework that collects different machine
learning methods would greatly help students to emphasise
commonalities and dissimilarities of algorithms in order to
identify their strengths and weaknesses.

For these reasons, an open source object-oriented machine
learning framework, formally named Java Intelligent Opti-
misation (JIOP) has been developed at Aalesund University
College to help bachelor and master degree students use
existing machine learning algorithms, combine them, extend
them or even experiment with new ones. The object-oriented
approach was justified by the need to create a clear modular
structure for the framework. Moreover, this choice makes it

easy to maintain and modify software. Consequentially, Java
was chosen as the language of development because it is
object-oriented, easy to learn and platform-independent. JIOP
already provides the following algorithms: Genetic Algorithm
(GA) (Deb et al. 2002), Simulated Annealing (SA) (Aarts
& Korst 1988), Differential Evolution (DE) (Storn & Price
1997), Particle Swarm Optimisation (PSO) (Kennedy 2010)
and Artificial Bee Colony (ABS) (Karaboga & Basturk 2007).
However, new methods can be easily developed and added to
the framework. The framework is available under a Berkeley
Software Distribution (BSD) license and can be retrieved from
the following website: https://github.com/aauc-mechlab/JIOP.

RELATED RESEARCH WORK

In recent years, the machine learning community has
developed a notable number of different libraries. However,
most of the time, these libraries are specifically designed for a
particular algorithm and for a defined application. Moreover,
they are typically written by using different languages and only
a few of them are publicly available. Very few comprehensive
collections of different algorithms are freely available to de-
velopers and students.

In (Kohavi et al. 1994), Kohavi et al. introduced MLC++,
a library of C++ classes for supervised machine learning.
MLC++ (up to version 1.3.X) is in the public domain and is
still distributed as such by the Silicon Graphics International
(SGI) Corporation. SGI MLC++ (V2.0 and higher) includes
improvements to the original MLC++. However, even if these
improvements are available in both source and object code
formats, they are only in the research domain. In (Abeel
et al. 2009), Abeel et al. presented Java-ML, a collection of
machine learning and data mining algorithms for both software
developers and research scientists. The interfaces for each type
of algorithm are quite clear and algorithms strictly follow their
respective interface. In (Heaton & Reasearch 2010), Heaton
outlined an advanced machine learning framework, formally
named Encog. This framework supports a variety of advanced
algorithms, as well as support classes to normalise and process
data. Most Encog training algorithms are multi-threaded and
scale well to multi-core hardware. Encog, which is available
for Java, .Net and C/C++, can also make use of a Graphical
Processing Unit (GPU) to improve processing time.

It should be noted that these libraries are often created to
be used by professional developers and as such, do not have
a very strong pedagogical orientation.

SYSTEM ARCHITECTURE

The JIOP design architecture aims to provide simplicity
and flexibility. The general idea is that the user should be able
to use the already-implemented algorithms or even implement
new algorithms with the least amount of effort. In order to
accomplish this, the framework relies on a number of abstract
classes and well defined interfaces to do most of the work.
Moreover, the framework supports generic types, denoted by
an <E> in this paper, which allows the user to choose how to
represent the variables to optimise. Thanks to generics, the user
is not only in control of whether or not the variables should
be stored in an array, a list, or some other user defined type,
but also if the variables should be stored as doubles, floats,

strings, etc. Also, JIOP provides multi-threading support on
a selected set of functions, more specifically functions that
creates and evaluates multiple candidates in a single method
call. A Unified Modelling Language (UML) class diagram
showing the software architecture is available in Fig. 1. The
general idea is that all algorithms must extend the base class,
the MLAlgorithm, whose goal is to optimise its candidates’
variables. A candidate is an Object with a set of variables
stored in an encoding instance and a cost which relates to the
fitness of the variables. A CandidateFactory instance may be
used to create new candidates. The following subsections gives
a more detailed description of the JIOP classes.

Base classes

The abstract MLAlgorithm class, described in Table I, is
the base class of the framework and defines a single abstract
method that subclasses must implement in order to function
as a JIOP optimisation class. The purpose of the abstract
internalIteration() function in all subclasses is to optimise
Candidate instances in a single step. Furthermore, this class
keeps a reference to the best Candidate found and also keeps
a history of the performance using the MLHistory class.

The abstract PopulationBasedMLAlgorithm class is a sub-
class of MLAlgorithm and adds functionality to store a popu-
lation of Candidate instances, as well as keeping a MLHistory
of the average performance.

The Candidate class, described in Table II, is a wrapper
around an Encoding instance and a corresponding cost. The
cost is a measure of performance, where a low cost is desirable.
Moreover, as the Candidate class implements the Comparable
interface from the Java standard library, any array or Collection
of Candidates can be sorted based upon its affiliated cost. A
related subclass is the final EvaluatedCandidate class, which
has additional information on time used and the number of
iterations that were necessary to find the candidate solution.

The Encoding interface is the basic template for any
class used to hold variables. The methods that need to be
implemented are shown in Table III. More specifically, classes
that implement this interface must store the actual variables
used in the optimisation process. The user may choose any
Java Object to represent the variables due to generics and
should implement this interface accordingly. However, some
implementations are included in the framework. Currently,
these are implementations for double[], float[], List<Double>
and List<Float> encodings. This general interface is extended
by another interface, ParticleEncoding, which is a special case
used for PSO optimisation, as this optimisation technique has
a velocity associated with its variables (Kennedy 2010).

The abstract EncodingFactory class defines a set of factory
methods, all of which returns an Encoding instance. These
methods must be implemented by subclasses, and are subse-
quently used by the CandidateFactory class, described in Table
V, to create new Candidate instances.

The CandidateContainer class extends the ArrayList class
from the Java standard library and is used to store candidates.
In addition to the standard list functionality, this class provides
functions for sorting, printing and getting the average score of
the contained candidates.

Fig. 1. A UML class diagram depicting the JIOP core classes in their respective software package

TABLE I. THE MLALGORITHM CLASS

Abstract class MLAlgorithm<E>
Data members
-Candidate<E> bestCandidate A reference to the best found candidate
-AbstractEvaluator<E> evaluator A reference to the evaluator
-CandidateFactory factory A reference to the candidate factory
-MLHistory history A reference to the optimisation history
-ExecutorService pool Thread pool used for multi-threading
Functions
+EvaluatedCandidate<E> runfor(long millis) Runs the algorithm for the specified amount of time
+EvaluatedCandidate<E> runFor(double error) Runs the algorithm until the error falls below the specified error
+EvaluatedCandidate<E> runFor(int iterations) Runs the algorithm for the specified number of iterations
+void iteration() Invokes internalIteration() and updates the MLHistory
+void reset(boolean clearHistory) Resets the algorithm and populates it with random candidates
+void reset(boolean clearHistory, List<E> seed) Resets the algorithm and populates it with new candidates based on the seed.
+void writeHistoryToFile(String location) Writes the history to a text-file
+void submit(List<Runnable> jobs) Uses multi-threading to finish the submitted jobs
Setters and getters omitted...
Abstract functions
+void internalIteration() Does a single optimisation step, implemented in a subclass

TABLE II. THE CANDIDATE CLASS

Class Candidate<E> implements Comparable
Data members
-BasicEncoding<E> encoding The candidate encoding.
-double cost The candidate cost
Functions
+Encoding<E> getEncoding() Returns the encoding
+E getVariables() Returns the encodings variables
+double getCost(double cost) Returns the cost of the candidate
+void setCost() Updates the cost
+int compareTo(Candidate c) Used to sort the candidates

TABLE III. THE ENCODING INTERFACE

Interface Encoding<E>
E getVariables() The variables - double[], String[] etc.
int size() The number of variables
Encoding<E> copy() A unique copy of the instance

The abstract Evaluator class, described in Table IV, defines
a single abstract method that subclasses must implement in
order for the evaluation process to work. Furthermore, it has
two extra convenience methods for evaluation.

The MLHistory class is a basic class in charge of storing a

TABLE IV. THE EVALUATOR CLASS

Abstract class Evaluator<E>
Functions
+double evaluate(Candidate<E> candidate) Evaluates the candidate
+double evaluate(Encoding<E> encoding) Evaluates the encoding
Abstract Functions
+double evaluate(E variables) Evaluates the variables

historic perspective of a MLAlgorithm. The class constructor
takes the iteration number, time-stamp and the cost as a input,
and adds the data to a list, which can be used later for plotting.

The MLHistoryPlotter uses a 3rd party library, JMathPlot
(µ-labs, 2012), and derives from the Plot2DPanel from said li-
brary. This class populates a line graph depicting the method’s
performance with regards to time or iterations, based on the
MLHistory data from a supplied MLAlgorithm.

Optimisation classes

The DE class is an implementation of the Differential
Evolution algorithm. It optimises a problem by maintaining
a population of Candidate instances and creates new ones by

TABLE V. THE CANDIDATEFACTORY CLASS

Class CandidateFactory<E>
Data members
-ExecutorService pool Thread pool used for multi-threading
-Evaluator<E> evaluator A reference to the evaluator
-EncodingFactory<E> factory A reference to the encoding factory
Functions
+Candidate<E> random() Returns a candidate with random variables
+Candidate<E> toCandidate(E e) Returns a candidate based on the variables
+Candidate<E> neighbour(Candidate<E> c) Returns a neighbour candidate
+List<Candidate<E>> randomCandidates(int n) Returns a List of n candidates (multi-threaded operation)
+List<Candidate<E>> toCandidates(List<E> e) Creates a list of candidates from the list of variables (multi-threaded operation)
+List<Candidate<E> neighbourCandidates(Candidate<E> original, int n) Returns a list of n neighbour candidates (multi-threaded operation)

combining existing ones. The behaviour of the algorithm can
be influenced by modifying the size of the population NP, the
weighting factor F and the crossover weight CR.

The PSO class is an implementation of the Particle Swarm
optimisation algorithm using a swarm of Candidate instances.
This method implements the ParticleEncoding interface as it
allows the Candidate to be updated according to the PSO
scheme. The behaviour of the algorithm can be influenced by
modifying the size of the swarm, the inertia weight ω and the
learning factors c1 and c2.

The ABS class is an implementation of the Artificial Bee
Colony algorithm, which is based on the intelligent behaviour
of a honey bee swarm. The behaviour of the algorithm can be
influenced by setting the size of the colony and the number of
bees employed as scouts.

The GA class is an implementation of a continuous Genetic
algorithm. It holds a population of Candidate instances and
optimises a problem by mimicking natural evolution using
elitism, selection, crossover and mutation. These operators can
be implemented by the user by way of the SelectionOper-
ator, CrossoverOperator and MutationOperator respectably.
The behaviour of the algorithm can be greatly influenced
depending on the selection and mutation operators as well as
the population size, crossover rate, mutation rate and elitism
variables.

The SA class is an implementation of the Simulated An-
nealing algorithm. It tries to mimic the annealing process in
metallurgy. It does not rely on a population of Candidate in-
stances, but uses a current Candidate and generates neighbours
of this instance. Furthermore, it has a starting temperature
and uses an annealing schedule to regulate it, defined by
the AnnealingSchedule interface, and a standard acceptance
probability function.

CASE STUDY

The case study focuses on finding a solution to the IK
problem, which consists of determining the joint parameters
that provide the desired position and orientation of the KUKA
robot’s end-effector. A solution to this problem can be found
using classical approaches, such as analytically using the Ja-
cobian matrix or through geometrics. However, the geometric
approach does not scale well with the number of DOFs to
be controlled, as the complexity of the calculations increases.
Furthermore the Jacobian approach is known to have stability
issues around singular configurations due to matrix inversions.
Therefore, modifications to the classical Jacobian must be
introduced. The main advantage of using machine learning

algorithms is to save the user from having to hard-code
geometric equations or deriving the Jacobian matrix from the
model’s forward kinematics (FK). Moreover, singular configu-
rations are not ill-posed as no matrix inversions are performed.
In order to conduct this case study, the same framework that
our own research group introduced in (Sanfilippo et al. 2013),
is used. More specifically, JIOP is used within this framework.

Description of the evaluation function

The evaluator measures the cost of the candidates, and is
made up of three components:

1) Positional error.
2) Orientation error.
3) The change in joint angles between two consecutive

IK solutions.

The sum of these components gives the cost of a proposed
candidate solution, where a lower score is better.

In this case study, the variables in the Candidate instances
are stored as a double[], which is an array of double precision
floating point numbers. A single value represents a joint
angle θn, whereas the whole array represents a complete joint
configuration [θ1, θ2, ...] for the KUKA robot. FK is utilised
to compute the resulting end-effector position and orientation
given a set of angles.

The position cost is found using the euclidean norm:

a =
√

(p1x − p2x)2 + (p1y − p2y)2 + (p1z − p2z)2 (1)

where p1 and p2 are the normalised desired and candidate
position vectors.

The orientation cost is also found using the euclidean norm:

b =
√
(o1x − o2x)2 + (o1y − o2y)2 + (o1z − o2z)2 (2)

where o1 and o2 are the normalised desired and candidate
orientation vectors.

The cost related to the changes in joint angles between
two successive solutions is given by (3) and is the sum of the
per-element absolute difference between the previous solution
θ̂(t− 1) and the candidate solution θ̂(t).

c = |θ̂(t-1)− θ̂(t)| (3)

This cost is added to encourage similar solutions, because the
6-DOF KUKA robot is redundant and can have multiple valid

TABLE VI. ALGORITHM SPECIFIC PARAMETERS

Genetic Algorithm Particle Swarm Optimisation Differential Evolution Artificial Bee Colony Simulated Annealing
Population Size 100 Swarm size 40 Population size 30 Swarm Size 30 Starting temperature, t0 100
Selection size .5 Inertia weight, ω .9 Weighting factor, F .8 Scouts 6 Annealing Schedule Geometric
Mutation rate .5 Local bias, c1 .9 Crossover rate, CR .9
Elitism .1 Global bias, c2 .9
Selection SUS

solutions.
The cost returned by the cost function is then given by:

cost = α a+ β b+ γ c (4)

where α, β and γ are weighting factors. In this case study,
these are: α = 1, β = 1 and γ = 0.03, where α and β were
chosen to consider the position and orientation error equally,
while γ was chosen by trial and error.

Algorithm parameters

The algorithm-specific parameters used in this case study
are shown in Table VI. For the GA algorithm, the crossover
rate is the probability of recombination, the mutation rate is the
probability of a mutation occurring at the gene level, the elitism
is the percentage of the population that survives unaltered into
the next generation and the population size is the number of
individuals to use. The selection type used by the GA is an
implementation of Stochastic Universal Sampling (SUS).

The parameters used in the PSO algorithm are the inertia
weight, the learning factors and the swarm size. The inertia
weight controls the velocity, the learning factors are biases
toward the local and global best positions respectively and the
swarm size is the number of particles to use.

For the DE algorithm, the weighting factor controls the
amplification of differential variation, the crossover weight
probabilistically controls the amount of recombination while
the population size is the number of parameter vectors to use.

The ABS algorithm parameters are the number of bees in
the colony, and the number of bees employed as scouts. The
scouts are responsible of looking for promising food sources
and communicate findings to the rest of the swarm.

Finally, the starting temperature for the SA algorithm is the
initial temperature of the system. The SA uses a GeometricAn-
nealingSchedule with a constant decay rate of 0.9 to iteratively
cool the temperature.

Optimisation using the JIOP framework

After extending the Evaluator class and implementing the
evaluate(E variables) function, an instance of this class is
passed on to the constructor of an MLAlgorithm along with
a CandidateFactory and additional algorithm-specific methods
and parameters. If the algorithm is population based, then a
CandidateContainer instance is also required. After instanti-
ating a MLAlgorithm instance, the user may call one of the
runFor() methods, which returns an EvaluatedCandidate with
the result. For a graphical representation of the result, the
user can initiate an MLHistoryPlotter and pass the respective
algorithm’s MLHistory instance to it. The resulting plot can
then be shown in a graphical window. Alternatively, the user
may write the data to a text-file, using the writeHistoryToFile(),
for plotting in some external software.

SIMULATION RESULTS

In this section, the performance of the machine learning
algorithms currently found in the JIOP framework are
presented. In particular, these are a DE, a PSO, a ABS,
a GA and a SA implementation. In order to simulate a
real operational scenario of the KUKA robot using position
control, a set of points that defines a possible trajectory for
the end-effector was chosen. In this operational scenario,
couples of adjacent points do not differ much from each
other statistically. Moreover, the algorithms have no more
than a 50 ms time frame to produce a solution in order
to maintain a real-time control scenario. Starting from the
beginning of the second solution, the initial population of
the respective algorithms is injected with a fraction of the
previously best found candidate solutions, which is a feature
of the MLAlgorithm and mimics elitism in GAs. Fig. 3, 4, 5,
6 and 7 shows a plot of the cost versus time of the different
algorithms. The data used to produce the plots is gathered
from the respective algorithms’ MLHistory and saved as a text
file, using the dumpDataTofile() function, and then plotted
using MATLAB. Table VIII shows the resulting position and
orientation of the end-effector. It is clear that the machine
learning algorithms implemented in JIOP and presented in
this paper are able to find the solution to the given problem
quickly and accurately. It should be noted that a cost of
zero is not possible because of the third component in the
cost function, given by (4). Furthermore, Fig. 2 shows the
resulting poses of the calculations.

Fig. 2. Visualisation of the five resulting KUKA poses, found using the JIOP
framework.

The computation was done on a computer running Win-
dows 7 with a quad core Intel Core i7-3820QM processor.
The result of utilising the processor’s multiple threads is given
in Table VII, and shows the total number of iterations that
the different algorithms were able to complete in the given
time-frame. It is clear that utilising multiple threads is highly
beneficial to the performance of the algorithms. Note that the
Simulated Annealing implementation runs on a single thread.
The result for four threads is therefore undefined.

TABLE VII. MULTI-THREADING PERFORMANCE

Algorithms Iterations
1 thread 4 threads

Differential Evolution 1508 4229
Particle Swarm Optimisation 1095 3375
Artificial Bee Colony 871 2181
Genetic Algorithm 581 1852
Simulated Annealing 42305 -

Fig. 3. Cost versus time using the Differential Evolution algorithm from the
JIOP framework solving five consecutive IK solutions

Fig. 4. Cost versus time using the Particle Swarm Optimisation algorithm
from the JIOP framework solving five consecutive IK solutions

Fig. 5. Cost versus time using the Artificial Bee Colony algorithm from the
JIOP framework solving five consecutive IK solutions

Fig. 6. Cost versus time using the Genetic Algorithm from the JIOP
framework solving five consecutive IK solutions

Fig. 7. Cost versus time using the Simulated Annealing from the JIOP
framework solving five consecutive IK solutions

TABLE VIII. SIMULATION RESULTS

Position [m] Orientation[deg]

Desired

[0.800, 0.000, 0.600] [0.000, 0.000, 0.000]
[0.700, 0.000, 0.500] [0.000, 7.500, 0.000]
[0.600, 0.000, 0.400] [0.000, 15.000, 0.000]
[0.600, 0.000, 0.250] [0.000, 22.500, 0.000]
[0.600, 0.000, 0.150] [0.000, 30.000, 0.000] Cost

DE

[0.800,−0.000, 0.600] [0.000, 0.000,−0.000] 0,0314
[0.700, 0.000, 0.500] [−0.000, 7.500,−0.000] 0,0066
[0.600,−0.000, 0.400] [−0.000, 15.000,−0.000] 0,0052
[0.600, 0.000, 0.250] [−0.000, 22.500,−0.000] 0,0044
[0.600,−0.000, 0.150] [−0.000, 30.000,−0.000] 0,0030

PSO

[0.800,−0.000, 0.600] [0.000,−0.000, 0.000] 0,0314
[0.700, 0.000, 0.500] [0.000, 7.500,−0.000] 0,0066
[0.600, 0.000, 0.400] [−0.000, 15.000,−0.000] 0,0052
[0.600,−0.000, 0.250] [0.000, 22.500,−0.000] 0,0044
[0.600, 0.000, 0.150] [0.000, 30.000, 0.000] 0,0030

ABS

[0.801,−0.000, 0.601] [−0.130,−0.136,−1.236] 0,0370
[0.700, 0.000, 0.500] [−0.048, 7.489,−0.076] 0,0083
[0.600, 0.000, 0.400] [0.001, 15.027,−0.021] 0,0055
[0.600, 0.000, 0.250] [−0.002, 22.513,−0.014] 0,0046
[0.600, 0.000, 0.150] [0.015, 29.987,−0.004] 0,0031

GA

[0.881, 0.019, 0.667] [−0.031, 0.031,−0.025] 0,0887
[0.702, 0.006, 0.501] [−0.066, 7.591,−0.357] 0,0332
[0.600, 0.000, 0.400] [−0.093, 14.950,−0.273] 0,0071
[0.600, 0.002, 0.252] [−0.011, 22.544,−0.055] 0,0061
[0.599, 0.002, 0.155] [−0.008, 30.002,−0.007] 0,0054

SA

[0.801, 0.003, 0.602] [−0.178, 0.006,−0.010] 0,0340
[0.700, 0.001, 0.501] [−0.419, 7.522,−0.097] 0,0086
[0.601, 0.001, 0.401] [0.238, 15.006,−0.081] 0,0070
[0.601,−0.001, 0.248] [0.131, 22.577, 0.054] 0,0064
[0.600, 0.001, 0.151] [−0.143, 29.871, 0.114] 0,0046

CONCLUSION AND FUTURE WORK

JIOP demonstrates an object-oriented machine learning
framework to anyone with an interest in machine learning
algorithms and the Java programming language. This is es-
pecially true for students that are in a need of a compact, easy
to use and highly configurable framework that also provides
visual feedback. In this case, JIOP delivers a effective and
lightweight environment for using and creating machine learn-
ing algorithms. A continuous effort will be made to streamline
and expand the framework with even more algorithms and
configuration options.

REFERENCES

Aarts, E. & Korst, J. (1988), ‘Simulated annealing and boltz-
mann machines’.

Abeel, T., Van de Peer, Y. & Saeys, Y. (2009), ‘Java-ml: A
machine learning library’, The Journal of Machine Learning
Research 10, 931–934.

Alpaydin, E. (2004), Introduction to machine learning, MIT
press.

Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. (2002), ‘A
fast and elitist multiobjective genetic algorithm: Nsga-ii’,
IEEE Transactions on Evolutionary Computation 6(2), 182–
197.

Evgeniou, T. & Pontil, M. (2004), Regularized multi–task
learning, in ‘Proceedings of the tenth ACM SIGKDD in-
ternational conference on Knowledge discovery and data
mining’, ACM, pp. 109–117.

Heaton, J. & Reasearch, H. (2010), ‘Encog java and dotnet
neural network framework’, Heaton Research, Inc., Re-
trieved on July 20, 2010.

Hormozi, H., Hormozi, E. & Nohooji, H. R. (2012), ‘The
classification of the applicable machine learning methods
in robot manipulators’, International Journal of Machine
Learning and Computing 2, 560–563.

Karaboga, D. & Basturk, B. (2007), ‘A powerful and efficient
algorithm for numerical function optimization: artificial bee
colony (abc) algorithm’, Journal of global optimization
39(3), 459–471.

Kennedy, J. (2010), Particle swarm optimization, in ‘Encyclo-
pedia of Machine Learning’, Springer, pp. 760–766.

Kohavi, R., John, G., Long, R., Manley, D. & Pfleger, K.
(1994), Mlc++: A machine learning library in c++, in
‘Proceedings of the Sixth International Conference on Tools
with Artificial Intelligence’, IEEE, pp. 740–743.

Kotsiantis, S. B., Zaharakis, I. & Pintelas, P. (2007), ‘Su-
pervised machine learning: A review of classification tech-
niques’.

Pluhacek, M., Senkerik, R., Zelinka, I. & Davendra, D. (2013),
Multiple choice strategy for pso algorithm - performance
analysis on shifted test functions., in ‘ECMS’, European
Council for Modeling and Simulation, pp. 393–397.

Sanfilippo, F., Hatledal, L. I., Schaathun, H. G., Pettersen,
K. Y. & Zhang, H. (2013), A universal control architecture
for maritime cranes and robots using genetic algorithms as
a possible mapping approach, in ‘Proceeding of the IEEE
International Conference on Robotics and Biomimetics (RO-
BIO) Shenzhen, China, December 2013’, IEEE, pp. 322–
327.

Simon, P. (2013), Too Big to Ignore: The Business Case for
Big Data, Wiley. com.

Storn, R. & Price, K. (1997), ‘Differential evolution–a simple
and efficient heuristic for global optimization over continu-
ous spaces’, Journal of global optimization 11(4), 341–359.

Zhu, X. (2006), ‘Semi-supervised learning literature survey’,
Computer Science, University of Wisconsin-Madison 2, 3.

AUTHOR BIOGRAPHIES

LARS IVAR HATLEDAL received a bachelor’s degree
in Automation from Aalesund University College, Norway.
Here, Hatledal joined the Department of Maritime Technology
and Operations as a Project Leader in June 2013.
Email: laht@hials.no

FILIPPO SANFILIPPO is a PhD candidate in
Engineering Cybernetics at the Norwegian University
of Science and Technology, and a research assistant at
the Department of Maritime Technology and Operations,
Aalesund University College, Norway. He obtained his
Master’s Degree in Computer Engineering at the University
of Siena, Italy.
Email: fisa@hials.no

HOUXIANG ZHANG received Ph.D. degree in Mechani-
cal and Electronic Engineering in 2003. From 2004, he worked
as Postdoctoral Fellow at the Institute of Technical Aspects
of Multimodal Systems (TAMS), Department of Informatics,
Faculty of Mathematics, Informatics and Natural Sciences,
University of Hamburg, Germany. Dr. Zhang joined the De-
partment of Maritime Technology and Operations, Aalesund
University College, Norway in April 2011, where he is a
Professor in Robotics and Cybernetics.
Email: hozh@hials.no

