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Abstract. A better understanding of natural behavior modeling in math-
ematical systems has enabled a new class of stochastic optimization al-
gorithms that can estimate optimal solutions using reasonable compu-
tational resources for problems where exact algorithms show poor per-
formance. The position up-dating mechanism in various optimization
algorithms utilizes similar chaotic random behavior which impedes the
performance of the search for a globally optimum solution in monotonic
nonlinear search space. In this work, an approach is proposed that tack-
les these issues on an already established algorithm; Improved Barnacle
Mating Optimization (IBMO) Algorithm, inspired by the movement and
mating of Gooseneck Barnacles. The algorithm introduces the mimicry of
the movement and mating behavior in nature to model an optimization
process. Several benchmark functions and engineering case studies are
employed to gauge the performance of the proposed optimization tech-
nique. Results are compared with several meta-heuristics and conven-
tional optimization algorithms. It is observed that the IBMO algorithm
per-forms generally better and provides a huge potential for solving real-
world problems.

Keywords: Metaheuristic Algorithms · Artificial Intelligence · Improved
Barnacles Mating Optimization · Engineering Design Problems

1 Introduction

The process of evolution in nature has made many micro and major processes
integrate mutually for a common goal. In recent decades, the complexity of
real-world problems has resulted in the need for highly intelligent and reliable
optimization techniques [7]. During the past century computing resources have
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exploded and brought forth a new class of optimization and control known as
meta-heuristics into both science and industry. Such optimization techniques be-
long to the field of Computational Intelligence with three main branches of fuzzy
logic, neural network and evolutionary computation. Swarm intelligence tech-
niques belong to the family of evolutionary computation, which is unique in the
sense as it mimics the simplest tasks performed by the swarm of a less intelligent
species that require collective behavior for survival. The shared distributive tasks
and ability to share information among the swarm particle/agents/members en-
able the solution for complex problems.

These solutions of a swarm-based movement/mating technique supersede
conventional algorithms due to it being free of the gradient based technique
which inherently gets trapped in local optima [25, 31]. The main obstacle comes
from the chaotic behavior of individual particles with nonlinear activity models.
Despite the connotation of ‘chaos’ which suggests unpredictable and irregular
systems, chaos theory suggests that seemingly random events can lead to a pat-
tern over time [19]. This also holds authentic for modern swarm intelligence-
based systems which randomly initiate problem formulation and improvise the
random solutions over some time. The main role in swarm intelligence is played
by random exploratory and exploitative phases. In the exploration phase, the
expectation is to get a high enough variance between agents to cover a massive
area of the search space while the exploitation phase focuses on a small subset of
the search space that already contains the best solution at any given time. The
exploration task facilitates the avoidance of local minima entrapment while the
exploitation task explores nearby promising solutions [2]. Most techniques utilize
pre-defined criteria for the balancing of exploration and exploitation behavior
such as in [13].

The most popular swarm-based algorithm, encouraged by the motion of a
swarm of birds, started this field of study is the Particle Swarm Optimization
(PSO) algorithm [12]. Other similar swarm-based algorithms proposed in the
literature include Grey Wolf Optimization (GWO) Algorithm [15], where the
alpha wolf carries the best solution and the consequent wolf classes, Ant Colony
Optimization (ACO) algorithm [8], Grasshopper Optimization Algorithm (GOA)
[17], Fruit fly Optimization Algorithm (FOA) [27] and many more.

While the above-mentioned algorithms conduct solution finding mechanism
using the movement and/or food foraging techniques of the swarm, other branch-
es of meta-heuristic solutions include physics-based techniques and evolutionary
algorithms. Some popular algorithms that mimic the laws of physics include Big-
Bang Big Crunch (BBBC) [21], Gravitational Search Algorithm (GSA)[20], Black
Hole [10], and Small World Optimization Algorithm (SWOA) [9]. Using meth-
ods such as gravitational force, electromagnetic force, inertial force and weights
these algorithms adopt physical rules to incorporate movement and communi-
cation of multi agents not unlike evolutionary algorithms that employ models
of evolution in nature. The set of candidate solutions is improved iteratively by
offspring production that inherit genes/properties of parents. For this category,
popular algorithms include Genetic algorithm (GA) [16], evolutionary Strate-
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gies (ES) [4], Biogeography-based Optimization [22], and Differential evolution
(DE) [18]. A new trend in solving the optimization tasks is developed where the
hybrid models are employed taking advantage of fast convergence of gradient
based decision processes and the effective exploration of computation-ally ex-
pensive optimization processes. For instance, the eagle strategy in con-junction
with Flower Pollination Algorithm (FPA) was used by [28] to balance the ex-
ploration and exploitation. In [1], Abdel-Raouf et al. chose Sudoku puzzles as
an optimization problem and then innovated a hybrid technique for optimiza-
tion using FPA and Chaotic Harmony Search (FPCHS). Using improved PSO,
improved whale optimization algorithm and dual population evolutionary mech-
anism, [26] - conceptualized a multi-objective hybrid algorithm for Automatic
train operation.

From all the optimization algorithms described in the literature, two things
can be surmised; (1) one single algorithm cannot be termed as the best suited for
all optimization related problems and (2) determination of the exploration and
exploitation phase requirements vary with each proposed optimization problem.
The former has been logically proven by the No-Free Lunch (NFL) Theorem [11].
If one algorithm works for one type of dataset problem, it cannot be guaranteed
that it will be best suited for another. This continuously encourages the research
field to bring forth new techniques. In case of the latter, each algorithm has
a specific set of instructions for determining the exploration and exploitation
phases. Both vary using tuning parameters within the algorithms. Hence, finding
a proper balance of the two, especially keeping in mind the stochastic nature of
meta-heuristic algorithms, is a difficult task.

Barnacles movement Optimizer (BMO) [24], a newly proposed bio-inspired
algorithm, has the features of fewer parameters and mathematical manipulation
to search for promising search space solutions. It can be conferred that with
a smaller mathematical model, the computation time is low but the tradeoff
be-tween accuracy is too high and warrants improvement in the areas of per-
formance and parameter tuning. In addition, the random behavior impedes the
performance for the search of a globally optimum solution in monotonic nonlinear
search space. This paper proposes an improved version of the bio-inspired meta-
heuristic algorithm in which the mimicry of the movement and mating behavior
of gooseneck barnacles is modelled. The effectiveness of the Improved Barna-
cles Mating Algorithm (IBMO) is evaluated using 23 benchmark test functions.
These functions contain unimodal, multi-modal and fixed dimension multi-model
functions. Secondly it has been put into comparison with other meta-heuristic
algorithms that are; PSO, GWO, BMO, Arithmetic Optimization Algorithm
(AOA) [3], Flower Pollination Algorithm (FPA) [29] and Dragonfly Algorithm
(DFA) [14].

2 Improved Barnacles Mating Algorithm

This section first presents the inspiration for the algorithm studied from Goose-
neck Barnacles’ movement and mating technique. Successively, the initialization
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and selection process for mating of the barnacles is discussed. Next the barna-
cles’ reproduction probabilistic model and the resulting exploration / exploita-
tion phases are studied. Finally, the improvement from the BMO technique is
introduced i.e., the movement of the barnacles, prior to the mating process, is
articulated.

2.1 Inspiration

Found in the rocky shores of the Eastern Atlantic, gooseneck barnacles (GB), a
species of filter-feeding crustaceans, begin their life cycle as free moving larvae
in the ocean [6]. Unlike their counterpart crustaceans such as crabs, lobsters
and shrimp that have free ranging lives, these barnacles grow to eventually be
attached to a hard surface. Amongst the crashing waves and direct sunlight,
these barnacles whiten in the intertidal zone. Only on rare occasions can they
be found stashed safely away from the rays of the sun and the high tides of the
sea. Goose-neck barnacles, unlike the acorn barnacles that encrust themselves
on the hard surface, bend their long necks back and forth but despite that, both
types of these barnacles once attached, stay there until the end of their life cycle.

GBs settle on hard surfaces in a rather remarkable way. Once their growth
is completed from free moving nauplius larvae to cyprid larvae to adults, they
attach on a rocky surface using their heads with a cement like strong substance.
The material has been used for many dental surgery adhesives. Once fully sub-
merged the GB metamorphoses its feet into feathery feeding appendages known
as ’cirri’. These cirri are used to clean the dead matter of the ocean by feeding
on it. Because it’s the feet that are faced towards the ocean, if any predators
end up eating the cirri of GB, it simply regrows it again. Contrary to that, if the
GB attached its feet on the ground and used its head as a feeding mechanism it
would surely die from predation [5]. The complete life cycle of GB is shown in
Fig. 1.

Once a GB finds its suitable location on the marine shores, other GBs also
fol-low the initial GB’s location and attach themselves close by for feeding and
mating purposes primarily because they do not physically move from their po-
sition of attachment. Barnacles are hermaphroditic, meaning they have both
male and female reproductive organs. The life cycle of these barnacles is illus-
trated in Fig. 1. Prior to the mating ritual, the movement and search of these
barnacles during the Nauplius to Cyprid Larvae to adulthood stage is used as
the inspiration for the improvement of the algorithm explained in the coming
sections.

2.2 Initialization

In IBMO, the candidate solutions are termed here as GB. The initial population
is initialized as:

GB =

g11 . . . g
N
1

...
. . .

...
g1t . . . g

N
t

 (1)
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Fig. 1. Life Cycle of Gooseneck barnacles: a) Eggs develop and hatch inside the adults
and are released into the water. b) Different stages of the nauplius larvae are developed
drifting overall several weeks developing complex structure. c) Cyprid larvae begin
searching for a suitable place to attach. d) Attached at the trunk (peduncle) of an
adult initially and later moves to the surface for permanent attachment. e) Adults
attached on rocks or hard surfaces mating either by the penis elongation or by the
sperm cast process

where g is the generic candidate and t is the complete population of the GB’s
size and N here represents the size of the control variables within each GB in the
population. The boundary conditions on the movement of the GB population
are applied using equations (2);

ub =
[
ub, . . . , ubi

]
lb =

[
lb, . . . , lbi

] (2)

where lb and ub is the bound for lower and upper respectively.

2.3 Mating Selection Method

The mating of every two barnacles in the selection process is dependent on the
length of the penis size (ps) of the male barnacle. The mating ritual is dependent
on the following principle:

– Random selection of the barnacles and restriction based upon the length of
the penis i.e., penis size. Since barnacles are hermaphrodites, each barnacle
can provide and receiving sperm from other barnacles. If the position of
the two barnacles in the mating process is larger than the penis size, sperm
casting is applied. Sperm cast happens when adjacent male penis is out
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of range of the GB, so the male-acting barnacle ejects sperm in the ocean
towards the direction of the female-acting barnacle for reproduction.

In the above-mentioned principal assumptions, the exploitation phase and
exploration phase are prescribed in the IBMO. The choosing strategy male-
female barnacles is expressed as:

GBmale = rand(n)

GBfemale = rand(n)
(3)

where n is the total number of barnacles.

2.4 Reproduction

The Hardy-Weinberg principle [23] states that in a random population of alleles
i.e., variant form of genes, with no external factors such as selection, crossover or
mutation, the offspring generation can be surmised as a simple relationship be-
tween allele frequency and genotype frequency. This law of offspring production
can be seen in equation (4):∑

i

p2iAiAj +
∑
i<j

2pipjAiAj (4)

where pi is the allelic frequency of allele Ai and similarly pj is the allelic
frequency of allele Aj . When in context with the GB mating process, Ai can be
expressed as the Male barnacle and Aj can be expressed as the Female barnacle
during the iteration process. The expected genotype process can be expressed
as such that the frequency of Male plus Male self-mating process generate off-
spring with the probability of p2. Similarly, the Female plus Female process has
a probability of q2 and Male plus Female generates with the probability of 2pq.
The sum of these probability entries is seen in equation (5):

p2 + 2pq + q2 = 1 (5)

Thus, in supposition, we can deduce that the offspring selection is dependent
on these two probabilities. Self-procreation of Male or Female barnacles produces
offspring of very little variance from the predecessor and as such this selection
does not use the exploitation phase of multi-agent optimization algorithms to
its optimal capacity as the offspring does not move in the search space therefore
self-procreation is not dealt with in this algorithm.

2.5 Exploration / Exploitation Phase

In order to produce the new variables, equations (6), (7) and (8) are used for
the reproduction phase:

GBnew
i = A ·GBN

male +B ·GBN
female (6)
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where A is the random number between [0,1] and B = (1−A). GBN
male and

GBN
female are the male and female variables that are selected from equation (3).

A and B dictate the weightage of the Male and Female’s positional characteristics
which are going to be passed down onto the new offspring. ps is responsible for the
determination of the exploration, exploitation phases. If the barnacle’s selection
is within the range of penile length of the chosen male, the former exploitation
phase occurs.

During the first half of the iteration process, the exploration phase needs to
be widened to find better optimum solutions in the search space. Therefore, a
parameter k is multiplied into the values of A and B as shown by the equation
(7). Using this parameter enhances the exploration phase from the traditional
Barnacles Mating Optimizer Algorithm.

A = k ·A
B = k ·B

(7)

In IBMO, the process of sperm casting is considered the exploration phase
and it happens when the selection of barnacles that are to be mated in the
current iteration becomes greater than the penis size ps. The process can be
expressed as:

GBnew
i = rand() ·GBN

barnacle_male (8)

2.6 Movement

GB larvae move across the ocean and attach on a rocky surface once fully grown.
For the purposes of mating, the GB attaches itself onto a surface with either a GB
already present or follows another GB that is going to attach itself onto the rocky
surface. This movement of following and attaching of the GB is represented as
following the entire population of GB’s best solution i.e., the global minima GB
for each iteration of the exploitation and exploration phase. This consideration
of the global minima is added in equation (6) and subtracted in equation (8) as
shown below:

GBnew
i = A ·GBN

male +B ·GBN
female + r ·GBbest

GBnew
i = rand() ·GBN

barnacle_male − r ·GBbest

(9)

where r is a random number within the range [0,1] and GBbest is the posi-
tion of the gooseneck barnacle with the global best solution from all previous
iterations. The pseudo code for the IBMO technique is shown in Algo 1. The
detailed process flow diagram of IBMO is illustrated in Fig. 2.

The main contribution of this work is the inclusion of the parameter k. The
inclusion of the k parameter and the movement algorithm enhancement from
the traditional barnacles mating optimizer helps expand the search range of the
algorithm and helps traverse towards the global minima solution much quickly.
This makes it easier also to move away from the local minima cost solutions and
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increases the diversity of the search space solution for the barnacle population
[24].

3 Experimental Results

In this section, numerous simulations are conducted to illustrate the efficacy
of the IBMO algorithm. First and foremost, 23 point of reference test func-
tions [25] are utilized to observe the features of the IBMO. The benchmark test
functions are categorized into; unimodal, multimodal, and composite functions.
As the name suggests the unimodal functions have single global minima point.
Therefore, the basic criteria of finding the minima solution with IBMO is tested.
Next, the multimodal and composite functions are tested which have multiple lo-
cal minima solutions so while the unimodal functions test the exploitation phase
of the algorithm, these two categories of functions test the exploration phase and
the avoidance of getting trapped in local minima solutions.

Algorithm 1: Pseudo Code of Proposed Algorithm
Initialize population GBi, i = 1, 2, . . . , N
Evaluate the fitness of each barnacle
Sort the solutions and find the best solution
while iter<iter_max do

set the value of ps
select male and female GB using eq. (3)
if Distance of male and female ≤ ps then

for Each variable do
Generate offspring using eq. (9)-A

Else if Distance of male and female > ps then
for Each variable do

Generate offspring using eq. (9)-B

Apply boundary conditions on updated solution Calculate Fitness and sort
population to update the best solution iter = iter + 1

return Best Solution;

For a fair quantitative comparison of the test functions, the base parameters
of the multi-agent algorithm needed to be kept the same. While the upper and
lower boundaries for each test function is different, the number of barnacles
chosen for the test is 30 and a maximum of 50 iterations were employed for
the barnacles to search the global minima solution. Each test for performed a
total of 30 times to generate statistical results. Different performance indicators
were used to test out the features of the algorithm which is the average of the
30 generated tests and the standard deviation of the best solutions. Qualitative
results are illustrated in the next section which includes search history, fitness
average, and search history of the multi-agents.
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Fig. 2. Flow chart of Proposed Algorithm

For comparison, six recent and traditional algorithms were used under the
same light of parameters namely, BMO, AOA, GWO, PSO, FPA, DFA. These
algorithms were chosen to distinguish the different capabilities IBMO has over
the characteristics of such nature of algorithms. The tuning parameters are cho-
sen for each algorithm, as suggested by the respective original papers. GWO
and FPA have been widely used in recent years, AOA and BMO are recently
conceived novel algorithms and DFA has a very wide based search capability.
A computational complexity analysis is also presented using the CEC-2019 test
functions. Finally, to understand the effectiveness of the algorithm in real world
applications, three mechanical design problems are tested and compared with
other algorithms to demonstrate the superiority of IBMO.

3.1 Qualitative Analysis

The first set of simulation results is performed on all 23 test functions with
IBMO with tuning parameters at ps = 0.4 and k = 2.0, 30 barnacles, and 50
iterations. The main objective of the simulation was to demonstrate the IBMO
algorithms efficacy. The test functions contain unimodal, multimodal, and fixed
dimension multi modal functions which would be the perfect litmus test for the
given algorithm because they include single minima and multiple minima which
will show the usage of the exploration and exploitation phase of the IBMO.

3.2 Quantitative Analysis

The effectiveness of the algorithm is tested against two further distinguishing
parameters. One is the increase in the dimensions for each function and the
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other is the effect of increases in the number of barnacles associated with the
IBMO algorithm. These parameters are highlighted primarily because the real-
world datasets are becoming more complex and hence it is required the algorithm
to be tested in complex scenarios. Secondly, the IBMO is further compared and
tested on the test functions (F1 – F23) with other meta-heuristic algorithms,
some recent and some traditional. The comparison draws out the superiority of
the algorithm against others. All values recorded as 0 represent values below
1.0e-300.

3.3 Comparative Analysis with other Algorithms

To show the efficacy of the proposed technique, the comparison of IBMO for
F1 to F23 test functions are performed with BMO, AOA, PSO, GWO, FPA
and DFA. Each algorithm uses 50 particles run through 500 iterations. The
tuning parameters of the IBMO are set the same as in the previous section. The
convergence curve comparison for the algorithms can be seen in Fig. 3.

Fig. 3. Convergence Curves

Detailed analysis of each function against different dimensions is prepared.
Referring to Table 1 and Table 2, IBMO has gained the far most performance
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by finding the global minima solution mostly better than other compared opti-
mizers. The best results are written in bold for better visualization of each test
function.

Table 1: Comparison of meta heuristic algorithms with IBMO for
unimodal and multimodal functions.

Func Dim IBMO BMO AOA PSO GWO FPA DFA

F1
2 0 3.34E-184 0 1.59E-04 0 1.94E-39 1.17E-123
10 0 3.12E-131 0 4.11E-01 1.94E-64 3.82E-10 4.21E-03
30 5.34E-272 1.38E-123 2.39E-28 4.64E+01 4.47E-06 2.98E+00 1.22E+03

F2
2 0 3.41E-90 0 8.14E-04 0 9.42E-21 2.35E-62
10 1.25E-160 1.36E-69 0 1.88E-01 6.64E-18 1.72E-05 2.87E-01
30 1.23E-143 8.33E-66 0 3.25E+00 5.13E+00 2.47E+00 1.23E+01

F3
2 0 4.57E-176 0 3.53E-07 0 3.91E-33 8.96E-124
10 0 1.09E-107 0 3.04E+00 9.07E-02 1.40E+00 1.57E+00
30 2.54E-212 7.37E-91 3.68E-03 8.08E+02 6.06E+03 1.68E+04 1.17E+04

F4
2 0 3.06E-87 0 4.84E-03 1.07E-304 8.86E-17 5.89E-62
10 1.88E-144 2.07E-58 0 4.03E-01 3.65E-22 9.62E-03 9.19E-01
30 2.55E-137 1.55E-56 4.86E-33 6.58E+00 1.11E+01 1.36E+01 1.75E+01

F5
2 6.54E-07 1.00E+00 4.55E-02 1.16E-04 2.14E-03 6.54E-07 6.54E-07
10 2.26E+00 8.82E+00 5.69E+00 1.14E+01 3.54E+00 6.56E+00 2.27E+00
30 2.70E+01 2.90E+01 2.88E+01 2.15E+03 2.89E+01 2.46E+02 2.24E+04

F6
2 1.03E-04 6.45E-06 1.51E-05 2.04E-04 2.52E-04 2.42E-04 1.01E-05
10 6.04E-01 2.50E+00 3.18E-02 8.62E-02 6.02E-01 7.01E-10 3.18E-02
30 1.56E+01 2.39E+01 1.69E+01 1.63E+03 1.01E+04 4.19E+03 1.92E+04

F7
2 1.92E-04 7.84E-05 3.75E-05 3.22E-04 4.88E-03 1.17E-04 7.97E-05
10 4.60E-05 3.63E-04 4.69E-05 3.61E-03 1.12E-02 7.32E-03 8.91E-03
30 1.79E-04 3.86E-04 8.34E-03 7.45E-02 4.90E-01 7.08E-02 3.03E-01

F8
2 -8.38E+02 -6.21E+02 -7.19E+02 -7.20E+02 -8.38E+02 -8.36E+02 -8.35E+02
10 -3.24E+03 -1.77E+03 -3.23E+03 -2.11E+03 -2.65E+03 -3.24E+03 -2.83E+03
30 -4.41E+03 -3.97E+03 -4.79E+03 -5.20E+03 -5.53E+03 -5.37E+03 -3.42E+03

F9
2 0 0 0 3.31E-05 9.95E-01 0 0
10 0 0 0 5.46E+00 2.31E+01 2.44E+01 1.39E+01
30 0 0 4.16E+00 5.35E+01 1.42E+02 2.30E+02 1.77E+02

F10
2 8.88E-16 8.88E-16 8.88E-16 6.73E-03 8.88E-16 8.88E-16 8.88E-16
10 8.88E-16 8.88E-16 1.31E-03 1.41E+00 8.41E+00 8.24E-03 6.60E+00
30 8.88E-16 8.88E-16 1.79E+01 3.75E+00 1.10E+01 6.74E+00 2.00E+01

F11
2 0 0 0 1.36E-02 7.40E-03 7.12E-10 7.40E-03
10 0 0 3.49E+00 4.60E-01 5.16E+00 2.09E-01 2.75E-01
30 0 0 4.64E+02 1.44E+00 5.44E+01 7.97E-01 7.64E+00

F12
2 2.36E-31 5.82E-04 5.54E-03 2.53E-06 1.38E-04 1.38E-04 2.12E-25
10 1.92E-04 1.47E-01 9.78E-02 5.59E-04 5.82E-01 4.77E-10 8.48E-02
30 7.37E-03 1.29E+00 6.79E+00 2.25E-01 1.45E+00 1.58E-02 7.40E-01

F13
2 1.35E-32 2.23E-03 1.17E-02 8.31E-08 1.35E-32 1.49E-04 1.35E-32
10 9.96E-12 7.30E-01 8.43E-02 1.06E-03 4.66E-01 9.66E-02 9.18E-03
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30 4.31E-03 2.85E+00 1.03E+00 3.03E-02 4.36E+00 1.98E+00 1.32E+00

Tabular results indicates that IBMO is far better at balancing between ex-
ploitation and exploration phases compared to other meta-heuristic algorithms.
Each test is run a total of 30 times and the best optimization score was recorded
for each algorithm.

Table 2: Comparison of meta heuristic algorithms with IBMO for
fixed dimension multimodal functions.

Func IBMO BMO AOA PSO GWO FPA DFA
F14 9.98E-01 3.80E+00 1.13E+01 9.98E-01 3.97E+00 9.98E-01 2.98E+00
F15 5.98E-04 5.64E-03 9.83E-04 1.63E-03 1.04E-03 6.86E-04 2.24E-03
F16 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00
F17 3.98E-01 4.45E-01 3.98E-01 4.00E-01 3.98E-01 4.00E-01 3.98E-01
F18 3.00E+00 1.99E+01 3.00E+00 3.01E+00 3.01E+00 3.01E+00 3.01E+00
F19 -3.86E+00 -3.81E+00 -3.84E+00 -3.86E+00 -3.86E+00 -3.84E+00 -3.84E+00
F20 -3.20E+00 -1.55E+00 -2.94E+00 -3.20E+00 -2.59E+00 -3.32E+00 -2.84E+00
F21 -6.03E+00 -4.40E+00 -4.81E+00 -5.05E+00 -5.06E+00 -1.02E+01 -1.02E+01
F22 -8.36E+00 -3.67E+00 -3.72E+00 -1.04E+01 -1.04E+01 -1.04E+01 -3.72E+00
F23 -7.02E+00 -1.65E+00 -4.97E+00 -1.05E+01 -5.13E+00 -1.05E+01 -3.83E+00

3.4 Computational Cost Analysis

A time-based computational cost investigation has been conducted in this sec-
tion with the IBMO algorithm. It can be determined by testing the algorithm
on the benchmark test functions for CEC-2020 protocol. These functions are set
as minimization problems with CEC01 to CEC03 having different dimensions
while CEC04 to CEC10 functions, which are rotated and shifted, have a dimen-
sion value of 10. Four specific computational times, T0,T1,T2,T̂2 are determined
which establish the complexity of the algorithm, evaluation criteria for which is
detailed in [30]. T0 is the runtime of a specific mathematical algorithm, T1 is the
computational time of the CEC function which has been run 10,000 times, T2 is
the computational time of the technique used to solve the minimization problem
of the CEC function in under 10,000 iterations and T̂2 is the mean value of 5
repetitions of the T2 time analysis. It is executed 5 times to cater for the varia-
tions in the time of execution due to the probabilistic nature of the algorithms.
The algorithms complexity is reflected by the following equation.

−→
T =

T̂2 − T1

T0
(10)

The proposed algorithm of IBMO tested on these computational times and is
compared with other similar metaheuristic algorithms on each CEC benchmark
test function. The results of the experiment is shown in Table 3. The value of
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T0 was determined to be 0.1162 seconds. Since the algorithms have multi-agent
solution finding technique, a population size of 10 was used for each algorithm
in comparison. Rest of the parameters are same as used in the previous section.
The machine used for the complete analysis is a Core i7 9750h with 16GB RAM.

Table 3: Comparison of meta heuristic algorithms with IBMO for−→
T (sec) time complexity analysis

Func.
−→
T IBMO

−→
T FDO

−→
T BMO

−→
T AOA

−→
T PSO

−→
T GWO

−→
T FPA

−→
T DFA

CEC01 335.14 10213.71 329.9 316.47 317.4 317 464.89 594.96
CEC02 14.54 197.15 13.41 5.82 4.92 5.27 242.62 542.33
CEC03 18.96 254.5 18.83 10.6 10.33 10.58 274.56 2075.9
CEC04 14.31 342.83 12.12 3.88 3.72 3.89 153.3 303.76
CEC05 14.77 615.55 13.74 4.4 4.36 4.97 153.31 302.95
CEC06 125.59 3312.43 115.17 110.05 110.4 111.38 259.73 410.83
CEC07 15.07 646.37 11.99 4.37 4.24 4.4 149.01 294.98
CEC08 13.52 191.17 12.08 4.51 4.25 4.39 149.83 302.48
CEC09 13.78 232.48 12.05 3.9 4.29 4.07 151.19 301.13

It is of paramount importance to realize that the dimensions of the multi-
agent algorithms i.e. to have well-balanced phases of exploration and exploita-
tion phase in congruence with the convergence speed is a significant aspect in
the evaluation of the novel IBMO algorithms. The exhaustive experimentation
conducted in this section proves that the optimization process of the IBMO algo-
rithm tends to localize towards a global search space solution for better results.

4 Discussion

Engineering optimization tasks involve finding many optimal solutions. With
constrained involved the number of local optima solutions increase while the
global optima seem to be hard to determine. The study conducted in this work
provides a review in the field of multi-modal test function optimization with a
comprehensive comparative analysis with other traditional and latest methods
with an application on engineering design constraint problems. The improved
method and other existing ones are analyzed in this paper. While most of the
algorithms provide sufficiently acceptable results for low dimensional functions,
IBMO is able to find a global optima solution for higher dimensional functions.
The best results are written in bold for better visualization of each test func-
tion. The traditional BMO algorithm suffers from the drawback of low search
accuracy and easy trapping of the solution onto a local state space. The paper
strategizes two main techniques. Firstly, it introduces random movement variable
during the exploration process to improve the reproduction process. Secondly,
the movement of the Gooseneck barnacles for mating is added. The mathemati-
cal mimicry of this movement ensures the algorithm does not get stuck in a local
optima solution.
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5 Conclusion

This paper presents an efficient optimizer motivated by gooseneck barnacles to
tackle the optimization problems. The qualitative investigation of the proposed
algorithm consists of the following metrics, namely; search history, the path of
the first dimension in the search space, fitness average, and speed of convergence
curve of IBMO. Furthermore, the IBMO algorithm is assessed with 23 benchmark
test functions involving uni-modal, multi-modal, fix-dimension multi-modal, and
composite functions. The results conducted from the experiments demonstrate
that IBMO assures the functioning of explorations while accomplishing higher
exploitation within an acceptable convergence speed, thus keeping an exceptional
balance between the exploitation phase and exploration phase. Statistically, the
algorithm returns a higher performance average compared with the other meta-
heuristic algorithms the suitability of IBMO’s performance can be theoretically
credited to the points as discussed below:

– The parameter penis size i.e. ps permits the IBMO to retain a constant
disorder rate whilst also assuring fast convergence, therefore evading local
optima solution traps.

– k guarantees the effectiveness of the early exploration and later exploitation.
– Based on historical data, suitable use of the discrete fitness values allows

IBMO to find better positional variables that evidently allow better adapt-
ability of the IBMO in different search phases.
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