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Abstract7

In this paper, a novel approach using a Henry Gas Solubility-based Stacked Con-
volutional Neural Network (HGS-SCNN) for hand gesture recognition using sur-
face electromyography (sEMG) sensors is proposed. The stacked architecture of
the CNN model helps to capture both low-level and high-level features, enabling
effective representation learning. To begin, we generated a dataset comprising
600 samples of hand gestures. Next, we applied the Discrete Wavelet Transform
(DWT) technique to extract features from the filtered sEMG signal. This step
allowed us to capture both spatial and frequency information, enhancing the dis-
criminative power of the extracted features. Extensive experiments are conducted
to evaluate the performance of the proposed HGS-SCNN model. In addition,
the obtained results are compared with state-of-the-art techniques, namely AOA-
SCNN, GWO-SCNN, and WOA-SCNN. The comparative analysis demonstrates
that the HGS-SCNN outperforms these existing methods, achieving an impres-
sive accuracy of 99.3%. The experimental results validate the effectiveness of
our proposed approach in accurately detecting hand gestures. The combination
of DWT-based feature extraction and the HGS-SCNN model offers robust and
reliable hand gesture recognition, thereby opening new possibilities for intuitive
human-machine interaction and applications requiring gesture-based control.
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Figure 1: Proposed Hybrid DL-based Hand Gesture Detection using sEMG

1. Introduction10

Human-robot interaction (HRI) holds significant importance in advancing in-11

telligent robotic systems, playing a crucial role in enabling seamless collaboration12

and enhancing user experience across diverse domains like healthcare, manufac-13

turing, and assistive technologies [1]. An essential component of effective HRI14

is accurate hand gesture recognition, allowing users to interact with robots natu-15

rally and intuitively by conveying commands, instructions, or intentions through16

hand movements [2]. Traditionally, vision-based techniques, involving cameras17

or depth sensors, have been the go-to approach for hand gesture recognition, al-18

though they face challenges related to lighting conditions, occlusions, variations19

in hand shapes, and applicability constraints in certain environments [3]. Also20

research is carried out on Leap motion controller based hand gesture detection in21

recent years [4].22

To overcome these limitations and enhance the robustness and adaptability23

of hand gesture recognition in HRI, the potential of surface electromyography24

(sEMG) sensors is being explored. sEMG sensors are capable of detecting and25

recording electrical signals generated by muscle activation during hand move-26

ments [5]. These signals provide valuable insights into the underlying muscle ac-27

tivities, enabling the interpretation of intended hand gestures. Leveraging sEMG28

sensors for efficient hand gesture classification has led to the proposal of vari-29

ous machine learning (ML) and deep learning-based techniques, which will be30

comprehensively discussed in this literature review.31

Machine learning has emerged as a promising solution in various fields to ad-32

dress and solve diverse challenges[6], [7],[8],[9]. The categorization of sEMG sig-33

nals using ML approaches necessitates feature extraction, i.e., time-domain [10]34

or frequency-domain features [11], and time-frequency domain characteristics [10].35

In [12], the classification of eight hand motions using the root mean square (RMS)36
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as a feature in a linear Support Vector Machine (SVM) was performed, which37

made it possible to operate a robotic arm of 4 DoF. Altimemy et al. [13] used38

Linear Discriminant Analysis and SVM to classify 12 hand motions for amputees39

and 15 hand movements for those with intact limbs. In [14], Waris et al. classified40

gesture data obtained over the course of seven days using both surface-extracted41

EMG signals and intramuscular EMG signals, demonstrating that the performance42

of the Artificial Neural Network (ANN) classifier has improved over time in com-43

parison to the traditional k-nearest neighbors (KNN) and SVM classifiers.44

Fourier inherent band functions (FIBFs) were created by dividing the sEMG45

signals, and statistical features were then extracted for SVM and KNN classi-46

fier [15]. By employing a jump motion device to capture the depth information,47

which increases the relabeling of gestures in the training phase, hand gesture de-48

tection may be improved. In [16], hand movements based on sEMG signals were49

classified using energy-based characteristics and a fine KNN. The requirement for50

manual feature set creation, which is a laborious operation and may not be suffi-51

ciently precise, is a major drawback of ML systems. The difficulty in choosing52

the best classifier for the specified characteristics is another problem.53

Although ML algorithms have shown some promise for the categorization of54

sEMG signals, deep learning (DL) approaches have gained popularity in recent55

publications. It is because they tend to perform better and instantly pick up on56

the key aspects [17]. As a result, the exoskeletons’ control system may be greatly57

enhanced by using DL approaches for the sEMG-based categorization.58

In [18], Atzori et al. used a deep CNN architecture with two convolutional lay-59

ers to carry out the sEMG classification job over the NinaPro DB1, DB2, and DB360

datasets. Compared to the KNN, SVM, Random Forests, and latent dirichlet allo-61

cation (LDA) [19] ML classifiers currently in use, the authors have demonstrated62

a performance gain of 2-5%. Geng et al. [20] established that instantaneous visu-63

als include patterns that are distinguishable between trials and comparable among64

samples of a single trial. In order to do this, they treated each sample of dimen-65

sion 1x10 as an instantaneous picture and sent it into the CNN model as an input.66

Metaheuristic algorithms with deep learning models have gained alot of attention67

in recent years [21, 22, 23, 24, 25, 26].68

A neural network variant that can handle sequential and temporal input is the69

recurrent neural network (RNN). Koch et al. employed a ConvLSTM cascaded us-70

ing the LSTM architecture in [27] to classify hand gesture sequences. To identify71

the high density (HD) and sparse sEMG signals, a stacked RNN with two stage72

networks was implemented in [28]. An attention-based CNN-RNN architecture73

that is capable of classifying the sEMG pictures was created by Hu et al. [29]. Us-74
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ing waveform-based classification, an LSTM model and a deep back-propagation75

(BP) LSTM were contrasted in [30].76

1.1. Contributions:77

Traditional ML and deep learning approaches for surface electromyography78

(sEMG) signal classification in the context of hand gesture recognition, often re-79

quire manual feature extraction, which is a laborious and time-consuming process.80

Additionally, selecting the most appropriate classifier for the specific characteris-81

tics of sEMG signals can be challenging. Furthermore, traditional ML and DL82

classifiers may struggle to accurately classify sEMG signals due to their inability83

to capture intricate patterns, inefficient tuning of hyperparameters, and exploit the84

hierarchical representations within the data. These limitations hinder the accu-85

racy, automation, and performance of sEMG signal classification for hand gesture86

recognition tasks.87

This work seeks to address the following key challenges:88

• Reliance on manual feature extraction, which is laborious, time-consuming,89

and sub-optimal. The use of automated DWT-based feature extraction over-90

comes this.91

• Inability to handle intricate spatial and temporal patterns in sEMG signals,92

due to the use of traditional ML classifiers like SVM, KNN, ANN.93

• Lack of robustness to real-world variations in hand shapes, sizes, gesture94

dynamics etc. The large heterogeneous dataset and deep learning approach95

aim to improve generalization.96

• Difficulty in tuning hyperparameters and finding optimal network architec-97

tures.98

• Many related works only focus on limited vocabulary or hand-crafted ges-99

tures lacking natural variability. This work uses a diversity of unrestrained100

hand gestures.101

• Reliance on visual or depth cameras, which are sensitive to environmental102

conditions.103

• Limited accuracy and reliability compared to vision-based techniques.104
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To overcome the above-mentioned problems, this work proposed a discrete105

wavelet transform (DWT) for automatic feature extractions using sEMG onset106

detection through moving average. After that hybrid DL model is proposed for107

the efficient classification of hand gestures. The proposed flow of the work is108

shown in Fig. 1. The contributions of this work are as follows:109

• Dataset Generation: Creation of a comprehensive dataset of 600 samples,110

providing a valuable resource for hand gesture detection research.111

• Feature Extraction with DWT: Effective utilization of the DWT for extract-112

ing discriminative features from hand gesture data, improving the accuracy113

of the detection system.114

• HGS-SCNN Model: Introduction of the novel Henry Gas Solubility-based115

Stacked CNN (HGS-SCNN) model, demonstrating its superior performance116

in hand gesture detection compared to alternative techniques.117

• Comparative Analysis: Comprehensive evaluation and comparison with AOA-118

SCNN, GWO-SCNN, and WOA-SCNN, showcasing the enhanced effec-119

tiveness of the HGS-SCNN approach in hand gesture detection.120

• Accuracy: Proposed DWT-based HGS-SCNN model achieves 99.3% accu-121

racy in hand gesture detection using only 2 channels of sEMG sensors.122

The organization of the paper is structured into various sections. Section II123

presents a novel approach that utilizes the DWT for automated feature extraction124

and a henry gas solubility algorithm based stacked CNN model for classification.125

Section III explains the acquisition and preparation of the sEMG dataset used for126

evaluation, including any preprocessing steps. Section IV presents the experimen-127

tal results of applying the proposed technique to the dataset, discussing the per-128

formance metrics and comparing them to previous approaches. Finally, Section V129

summarizes the findings, highlights the contributions of the proposed technique,130

and discusses potential avenues for future research in the field of sEMG signal131

classification for hand gesture recognition.132

2. Proposed Technique:133

2.1. Henry Gas Solubility Algorithm (HGS):134

J.W. Henry initially presented Henry’s law in 1800. In general, the most so-135

lute that can dissolve in a given amount of solvent at a given pressure or temper-136

ature is referred to as the solubility [31]. Consequently, HGS was motivated by137
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Figure 2: Working of Henry Gass Optimization (a) Movement of particles when P1 pressure is
applied (b) Movement of particles when P2 pressure is applied

Henry’s law’s conduct. Henry’s law may be used to calculate the solubility of low-138

solubility gases in liquids. Additionally, the two parameters that impact solubility139

are temperature and pressure. At high temperatures, solids become more soluble,140

whilst gases become less soluble. With respect to pressure, gas solubility rises as141

pressure does. As seen in Fig. 2, the subject of this algorithm is the solubility of142

gases.143

In this section, the mathematical model of Henry Gas Solubility algorithm144

(HGS) is presented [32].145

2.1.1. Initialization146

The particles are randomly initialized based on the following equation:147

Xi(t+ 1) = Xmin + r × (Xmax −Xmin) (1)

where X(i) represents the location of the ith particles among a population N , r is148

a number chosen at random between 0 and 1, Xmin and Xmax are the problem’s149

upper and lower limits, and t is the number of iterations. The Eq. 2-4 serves as150

the start value for no. of particles i, values of Henry’s constant of type j (Hj(t)),151

partial pressure of gas i in cluster j (Pi, j), and E/R constant of type j (Ci).152

hj = p1 × r (2)
153

Pi,j = p2 × r (3)
154

Cj = p3 × r (4)
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where p1, p2, and p3 are defined as constants with values equal to 5 × 10−2, 100,155

and 1× 10−2, respectively and r is the random number between 0 and 1.156

2.1.2. Clustering:157

The particles are separated into equal clusters, each of which is associated with158

a different kind of gas. Because each cluster is made up of gases that are identical159

to one another, they all have the same value for Henry’s constant (Hj).160

2.1.3. Evaluation:161

The particle that achieves the greatest equilibrium state among other molecules162

of the same kind is determined for each cluster j. The best particle throughout the163

whole swarm is then determined by ranking the particles in order of performance.164

2.1.4. Henry Coefficient Updation:165

The solubility is updated based on the following equation:166

Si,j(t) = U × Lj(t+ 1)× Pi,j(t) (5)

where, Si,j represents the solubility of gas i in cluster j, Pi,j is the partial pressure167

of gas i in cluster j, and U is a constant.168

2.1.5. Position Updation:169

The position is updated using the following equation:170

Xi,j(t+1) = Xi,j(t)+F×r×γ×(Xbest,j(t)−Xi,j(t))F×r×α×(Si,j(t)×Xbest(t))
(6)

In this equation, Xi, j denotes the location of the particle i in the cluster j,171

F controls the search agent’s orientation and adds diversity (pm), and r and t172

denote the iteration time and random constant, respectively. The best particle173

in the swarm is Xtextbest, whereas the best particle in the cluster is Xtextbest, j.174

Additionally, alpha is the impact of other particles on particle i in cluster j (equal175

to 1), beta is a constant, and gamma reflects the capacity of gas j in cluster i to176

interact with other gases in its cluster. In contrast to Stextbest, which represents the177

fitness of the best gas in the overall system, Si, j specifies the fitness of gas i in178

cluster j. The parameters Xtextbest, j and Xtextbest, which denote the best particle179

in the cluster j and the best particle in the swarm, respectively, play a critical role180

in balancing the exploration and exploitation abilities.181
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2.1.6. Local Optimum Avoidance:182

The number of worst agents (denoted asNw) is determined using the following183

equation:184

Nw = N × (rand(c2− c1) + c1) (7)

Here, N represents the total number of search agents, and c1 and c2 are constants185

with values of 0.1 and 0.2, respectively.186

2.2. Discrete Wavelet Transform (DWT)187

DWT is a mathematical tool that decomposes a signal into a set of wavelet188

coefficients at different scales [33]. A collection of wavelet functions, which are189

the dilations and translations of a mother wavelet function, serve as the foundation190

for the DWT. A signal x(n)’s DWT is given by:191

cj,k = ⟨x, ψj,k⟩ =
∑
n

x(n)ψj,k(n) (8)

where j and k are integer values that define the scale and translation of the wavelet192

functions, ψj,k(n) and ϕj,k(n) are the wavelet and scaling functions at scale j and193

translation k, and ⟨·, ·⟩ denotes the inner product between two functions. The194

mother wavelet function psi(n) and scaling function phi(n) are dilated and trans-195

lated to produce the wavelet and scaling functions as follows:196

ψj,k(n) = 2j/2ψ
(
2jn− k

)
(9)

The wavelet coefficients cj,k capture the high-frequency components of the197

signal at scale j and translation k, while the scaling coefficients dj,k capture the198

low-frequency components of the signal at scale j and translation k. The DWT199

can be computed iteratively by applying a series of high-pass and low-pass fil-200

ters to the signal, followed by down sampling by a factor of 2. The Daubechies201

10 (db10) wavelet is a popular wavelet used in the DWT due to its good time-202

frequency localization and smoothness properties. The db10 wavelet is obtained203

by applying a series of high-pass and low-pass filters to a scaling function ϕ(n),204

which is a piecewise polynomial function of degree 9. The db10 wavelet has 20205

filter coefficients, which can be computed using the following recursive equations:206

h0 =
1 +

√
3

4
√
2

(10)
207

h1 =
3 +

√
3

4
√
2

(11)
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Figure 3: Proposed stacked CNN architecture with detailed layer structure

h2 =
3−

√
3

4
√
2

(12)

h3 =
1−

√
3

4
√
2

(13)

h4+i = (−1)ih3−i, i = 0, 1, 2, 3 (14)

g0 = h3 (15)

g1 = −h2 (16)

g2 = h1 (17)

g3 = −h0 (18)

g4+i = (−1)ig3−i, i = 0, 1, 2, 3 (19)

where hi and gi are the filter coefficients for the low-pass and high-pass filters,208

respectively. The first four coefficients, h0 to h3, are the coefficients for the low-209

pass filter, and the remaining coefficients, h4 to h9 and g4 to g9, are the coefficients210

for the high-pass filter. The remaining filter coefficients are obtained by applying211

a symmetry condition to the first four coefficients for both the low-pass and high-212

pass filters.213
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In this study, we specifically opted for the Daubechies 10 (db10) wavelet as our214

primary mother wavelet function for conducting the Discrete Wavelet Transform215

(DWT). The choice of db10 wavelet was grounded in its advantageous properties216

that render it particularly suitable for our intended analysis. Firstly, db10 exhibits217

remarkable time-frequency localization, effectively capturing transient features218

and local patterns within the surface electromyography (sEMG) signals. This219

precision in localization is pivotal for an accurate representation of the signal’s220

dynamics. Moreover, db10 stands out for its smoothness, a characteristic that cir-221

cumvents the issue of abrupt discontinuities that may manifest with other wavelet222

functions. This attribute significantly contributes to the stability of the feature223

extraction process, ensuring a reliable and consistent analysis of the signals. An-224

other notable quality of db10 is its possession of 10 vanishing moments, an aspect225

critical for effectively representing complex signals by suppressing higher-order226

polynomial behaviours. Furthermore, the db10 wavelet encompasses a set of 20227

filter coefficients, computed through recursive relationships as defined in the rel-228

evant literature. This distinctive feature equips the db10 wavelet with an optimal229

filter length, enhancing its efficacy in signal processing and analysis. The care-230

ful consideration of these properties collectively informed our decision to employ231

the db10 wavelet as a fundamental tool for the wavelet-based analysis of sEMG232

signals in this study.233

Regarding the determination of decomposition levels for the Discrete Wavelet234

Transform (DWT), a deliberate and empirical approach was taken, resulting in the235

application of a 4-level decomposition to the surface electromyography (sEMG)236

signals. This decision was reached through thorough experimentation involving237

various levels, ranging from 2 to 6, with the aim of finding the most effective238

and suitable depth for our analysis. After comprehensive testing, it became ev-239

ident that a 4-level decomposition struck an optimal balance between frequency240

resolution and feature dimensionality for the hand gestures under examination.241

Lower decomposition levels were found to lack the necessary frequency resolu-242

tion, potentially leading to an inadequate representation of signal nuances. On243

the other hand, higher decomposition levels presented a challenge by introduc-244

ing excessive feature dimensions without a proportional gain in informative sig-245

nal characteristics. The 4-level decomposition was a judicious choice, offering a246

well-rounded solution by providing localized frequency information across dis-247

cernible sub-bands. This localization was vital for ensuring robust and effective248

feature extraction specifically tailored to the nuances of hand gestures. The sub-249

band distribution achieved through this decomposition proved to be particularly250

conducive to the accurate and meaningful extraction of features from the sEMG251
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signals associated with the hand gestures being studied. Therefore, the rationale252

behind selecting the Daubechies 10 (db10) wavelet function and implementing a253

4-level DWT decomposition was grounded in achieving an optimal trade-off be-254

tween frequency resolution and feature dimensionality, ultimately enhancing the255

efficacy of the feature extraction process crucial for analyzing hand gestures in this256

research. These carefully considered design choices shed light on the thoughtfully257

constructed DWT-based feature extraction methodology utilized in this study.258

2.3. CNN:259

Convolutional Neural Networks (CNNs) are a class of deep learning models260

that have proven to be highly effective in many applications [34]. CNNs are par-261

ticularly well-suited for tasks involving spatial and temporal data, such as images,262

videos, and time-series data. CNN network uses convolutional layers to automat-263

ically learn hierarchical representations of the input data, which are then fed into264

fully connected layers for classification or regression. The detailed structure of265

stacked CNN is shown in Fig. 3.266

A one-dimensional CNN is a variant of the standard CNN architecture that267

is designed for processing one-dimensional input data, such as time-series data or268

sequences of feature vectors [35]. In a 1D CNN, the input data is convolved with a269

set of filters, each of which slides over the input in a single dimension. The output270

of each filter is then passed throughReLu activation, before being downsampled271

using max pooling or average pooling.272

The mathematical equations for a 1D CNN can be expressed as follows. Given273

an input signal x ∈ RT×C and a filter Wk ∈ RF×C , where T is the length of the274

signal, C is the number of channels, and F is the filter size.275

The convolution of the k-th filter with the input signal is computed by sliding276

the filter over the input channels and summing the element-wise product at each277

position, including a bias term bk:278

(Wk ∗ x)[t] =
C∑
i=1

F−1∑
j=0

wki,j · xt+j,i + bk, t = 1, 2, . . . , T − F + 1, (20)

where wki,j is the element at the i-th row and j-th column of the filter Wk, xt+j,i279

is the element in the i-th channel at position t+ j in the input signal, and bk is the280

bias term for the k-th filter.281

Apply the activation function f(·) to each element of the convolution result:282
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Table 1: Range of Hyperparameters of CNN
Parameter Range

No. of Filters [20-29]
Filter Size in Each Layer [1-7]

Activation Functions LeakyReLu, ReLu, Tanh
Learning Rate [10−5-10−1]
Dropout Rate [0-0.7]

zk[t] = f((Wk ∗ x)[t]), t = 1, 2, . . . , T − F + 1 (21)

The activation function introduces nonlinearity into the model. The result of the283

convolution and activation for the k-th filter forms a feature map zk:284

zk = [f((Wk ∗ x)[1]), f((Wk ∗ x)[2]), . . . , f((Wk ∗ x)[T − F + 1])] (22)

The feature map has a length of (T − F + 1). Repeat the above steps for each285

filter k to obtain the complete set of feature maps z1, z2, . . . , zK .286

zk = [f((Wk ∗ x)[1]), f((Wk ∗ x)[2]), . . . , f((Wk ∗ x)[T − F + 1])] (23)

for k = 1, 2, . . . , K.287

One of the main benefits of using 1D CNNs is their ability to learn meaningful288

features. 1D CNNs can also capture local dependencies in the data, allowing for289

the detection of patterns that may not be visible at the global level. Moreover,290

1D CNNs can handle variable-length time series data and are robust to noise and291

missing values. Therefore, 1D CNNs offer a powerful and flexible approach to292

time series analysis that can yield state-of-the-art results in a wide range of appli-293

cations.294

2.4. Hyperparameters of SCNN295

Hyperparameters are vital components that significantly influence the perfor-296

mance and optimization of a stacked CNN for classification tasks. They dictate297

the architecture and behavior of the network, and proper selection and optimiza-298

tion are crucial for enhancing accuracy, convergence speed, and generalization299

capability. The range of hyperparameters of SCNN is shown in Table 1.300
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2.4.1. Number and Size of Filters301

The number and size of filters determine the receptive field of the network.302

While a larger number of filters can capture more diverse features, it also increases303

computational complexity. Striking a balance between the number and size of304

filters is important to extract relevant features efficiently.305

2.4.2. Kernel Size306

The kernel size defines the size of the convolutional window moving across the307

input. A smaller kernel size can capture local details, while a larger kernel size308

can capture more global patterns. Selecting an appropriate kernel size depends on309

the characteristics of the input data and the complexity of the classification task.310

2.4.3. Stride and Padding311

The stride determines the step size of the convolutional window during the312

convolution operation. Larger stride values reduce the spatial dimensions of the313

output feature maps, resulting in faster processing but potentially losing fine-314

grained details. Padding can be used to preserve spatial dimensions by adding315

zeros around the input. Proper stride and padding selection help maintain relevant316

information while controlling computational requirements.317

2.4.4. Pooling318

Pooling layers reduce the spatial dimensions of the feature maps, aiding in319

translation invariance and reducing computation. Pooling can be performed using320

operations like max pooling or average pooling. The choice of pooling size affects321

the amount of downsampling and the retention of important features.322

2.4.5. Learning Rate323

The learning rate determines the step size during the optimization process.324

A high learning rate may lead to overshooting and failure to converge, while a325

low learning rate can slow down the convergence or get stuck in local optima.326

Tuning the learning rate is essential to ensure efficient convergence and accurate327

classification.328

2.4.6. Regularization329

Regularization techniques such as dropout and weight decay are crucial for330

preventing overfitting, especially when dealing with limited training data. The331

choice of regularization strength can significantly affect the model’s generaliza-332

tion ability.333
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2.5. Importance and Difficulty of Optimization334

Optimizing the hyperparameters of a CNN is a critical aspect of designing335

an effective neural network for a specific task, such as image classification. Hy-336

perparameters are configurations that dictate the architecture, behavior, and train-337

ing process of the neural network, distinct from the model’s learnable parameters338

(weights and biases). Properly chosen hyperparameters can significantly influ-339

ence the network’s performance, convergence speed, generalization ability, and340

resource efficiency.341

2.5.1. Effect on Model Performance:342

The hyperparameters, such as the number of filters, filter sizes, learning rates,343

and activation functions, directly affect the model’s ability to learn intricate pat-344

terns and features from the input data. For instance, an optimal learning rate can345

ensure faster convergence and better accuracy, while an unsuitable one might lead346

to overshooting or slow convergence.347

2.5.2. Generalization and Overfitting:348

Hyperparameters play a pivotal role in combating overfitting, a situation where349

the model learns to memorize the training data instead of learning useful patterns.350

Techniques like dropout rates and weight regularization are hyperparameters cru-351

cial for improving generalization, preventing overfitting, and making the model352

perform well on unseen data.353

2.5.3. Search Space and Optimization Difficulty:354

The space of possible hyperparameters is vast, and the effect of each hyper-355

parameter is often interdependent and non-linear. This complexity makes manual356

selection impractical. Algorithms such as grid search, random search, Bayesian357

optimization, and evolutionary methods like genetic algorithms attempt to navi-358

gate this expansive search space efficiently.359

2.5.4. Computation and Time Complexity:360

Optimizing hyperparameters involves training and evaluating multiple mod-361

els, making it computationally expensive and time-consuming, especially for deep362

neural networks. The need for substantial computational resources adds to the363

challenge, particularly when dealing with large datasets and intricate CNN archi-364

tectures.365
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Table 2: Hgs based Tuned Hyperparameters of SCNN
Parameter Range

No. of Filters 64
Filter Size in Each Layer 3

Activation Functions ReLu
Learning Rate 10−2
Dropout Rate 0.5

2.5.5. Trial and Error Experimentation:366

Finding the optimal set of hyperparameters usually involves a trial-and-error367

approach, where various combinations are tested. This iterative process can be368

laborious and requires a good understanding of the problem, the model, and the369

dataset.370

2.6. Henry Gass Solubility based SCNN (HGS-SCNN):371

As described above, the main demerit of the CNN architecture is that it in-372

volves a large number of hyperparameters, including the size of the filters, the373

number of filters, and the learning rate for the optimiser. Tuning these hyperpa-374

rameters can be a time-consuming and challenging process, requiring extensive375

trial and error experimentation.376

To address these challenges, researchers employ various techniques like grid377

search [36], random search [37], Bayesian optimization, or evolutionary intelligence-378

based methods such as genetic algorithms (GAs) [38], particle swarm optimisa-379

tion (PSO) or Grey wolf optimizer (GWO). These algorithms are designed to effi-380

ciently search for optimal hyperparameters by exploring the hyperparameter space381

using heuristic techniques and mathematical optimisation methods. In this work,382

we employed the Henry Gas Solubility (HGS) algorithm to tune the hyperparam-383

eters of the CNN architecture. The proposed flow of HGS based SCNN model is384

shown in Fig. 4, while the tuned hyperparameters of the SCNN model are shown385

in Table 2.386

2.7. Motivation of using HGS Algorithm:387

The selection of the Henry Gas Solubility (HGS) algorithm for hyperparame-388

ter tuning in the Stacked Convolutional Neural Network (SCNN) is underpinned389

by the aspiration for an optimization technique that resonates with the intrinsic na-390

ture of the hand gesture recognition problem. The HGS algorithm, inspired by gas391

solubility principles, presents a nature-inspired optimization approach. Emulating392
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Figure 4: Hyperparameter Tuning Flow of Proposed HGS-SCNN technique

the behaviour of gas molecules in confined spaces, it offers a novel perspective to393

solving optimization problems. One of the pivotal motivations for employing this394

approach is its efficiency in exploring the high-dimensional hyperparameter space395

characteristic of SCNNs. By simulating the diffusion of gas molecules, the algo-396

rithm strives to efficiently navigate this space, crucial for discovering an optimal397

set of hyperparameters significantly impacting SCNN performance. Moreover,398

the gas-inspired exploration carries the potential to achieve global optimization, a399

desirable trait for developing a robust SCNN model with improved generalization400

capabilities, particularly in the domain of hand gesture recognition. This approach401

aligns seamlessly with the fundamental design principles of CNNs, particularly in402

feature extraction tasks, making it a suitable choice for optimizing SCNNs.403

3. Dataset Collection and Processing:404

3.1. Dataset Generation:405

The dataset consists of surface electromyography (sEMG) signals recorded406

from 2 sensors interfaced with an Arduino MEGA 2560 microcontroller. Data407

are collected from 5 subjects performing 6 different gestures and every gesture408
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Figure 5: Hand Gestures used for Dataset Generation and Classification

is repeated 20 times, resulting in a comprehensive dataset for training and eval-409

uation. The hardware setup involves connecting the Arduino MEGA 2560 with410

MATLAB Simulink 2022a. This integration allows for real-time data acquisi-411

tion and communication with the microcontroller board. Two sEMG sensors are412

connected to the Arduino MEGA, providing simultaneous recording of muscle413

activation signals from multiple hand muscles. The six hand gestures used for414

dataset generation are shown in Fig. 5.415

The sEMG sensors used in this study are non-invasive electrodes that detect416

electrical signals generated by muscle contractions. These sensors are carefully417

placed on specific hand muscles to capture the corresponding muscle activation418

patterns during hand gestures. Subjects were instructed to position the sensors419

according to standardized electrode placement guidelines. A well-defined ges-420

ture protocol was employed to ensure consistency across data collection sessions.421

Each hand gesture consisted of an action phase and a rest phase, both lasting 2422

seconds. During the action phase, subjects were instructed to perform the target423

hand gesture, while the rest phase involved relaxation with no intentional mus-424

cle activity. This protocol aimed to capture the distinct sEMG patterns associated425

with each gesture.426
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Table 3: Specifications for the hand gesture dataset generation
variable Value

No. of Subject 5
No. of Gestures 6
No. of Channels 2

No. of Repetitions 20
Sampling Frequency (Hz) 1000

Activity Duration (s) 2
Rest Time (s) 2

Data collection sessions were conducted with 5 subjects, who were briefed427

about the experimental procedure and provided informed consent. Each subject428

performed the 6 hand gestures, with 20 repetitions per gesture. The order of ges-429

tures was randomized to minimize any potential order effects. Subjects were given430

adequate rest intervals between repetitions and gestures to minimize muscle fa-431

tigue. During the data collection process, the sEMG signals were continuously432

recorded from the sensors at a sampling rate of 1000 Hz. This high sampling433

rate ensured capturing fine-grained details of the muscle activation signals. The434

acquired signals were transmitted in real-time from the Arduino MEGA to MAT-435

LAB Simulink for further processing and storage. The dataset generated from the436

data collection process comprised a total of 120 instances for each subject (20 rep-437

etitions x 6 gestures). Considering the 5 subjects, the final dataset consisted of 600438

instances. This sufficiently large dataset facilitates robust training and evaluation439

of hand gesture recognition models. The specifications of the dataset generation440

are shown in Table 3.441

3.2. Filtering:442

Filtering is a crucial preprocessing step in enhancing the quality and relia-443

bility of electromyography (EMG) signals. In this study, a bandpass filter with444

a frequency range of 20 Hz to 300 Hz was employed to selectively pass sig-445

nals within the desired frequency band while attenuating frequencies outside this446

range. This specific frequency range was chosen based on its biological rele-447

vance to muscle activation patterns and the need to remove low-frequency noise448

and high-frequency interference [39]. By implementing the bandpass filter, un-449

wanted noise, such as baseline drift and power line interference, was effectively450

eliminated, allowing for a clearer representation of the underlying muscle activity.451
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The implementation of the bandpass filter involved employing suitable digital452

signal processing techniques. The filter’s performance was evaluated by assessing453

its frequency response, magnitude response, and phase response. This evaluation454

ensured that the bandpass filter effectively attenuated out-of-band noise while pre-455

serving the relevant frequency components within the 20 Hz to 300 Hz range.456

3.3. Feature Extractions:457

The analysis of sEMG sensor data of hand gestures involves a multi-step pro-458

cess to extract meaningful information and features. The initial step in this flow459

is to calculate the moving average of the signal. This is accomplished by apply-460

ing a sliding window technique, where the average value of the signal within a461

specific window size is computed. The moving average helps to reduce noise and462

smooth out the signal, enhancing the visibility of underlying patterns and features463

related to hand gestures. By utilizing this technique, the overall signal quality is464

improved, enabling subsequent analysis steps to be more effective.465

Following the calculation of the moving average, the next crucial step is EMG466

onset detection. EMG onset refers to the initiation of muscle activity associated467

with the hand gesture. Detecting the precise onset of EMG activity is vital for468

accurately capturing the relevant data during the hand gesture performance. Var-469

ious techniques can be employed for EMG onset detection, such as amplitude470

threshold-based methods, slope-based methods, or ML algorithms. These ap-471

proaches analyze the characteristics of the moving average signal and identify472

the point at which the EMG activity exceeds a certain threshold or exhibits a sig-473

nificant change, indicating the start of the hand gesture.474

After identifying the EMG onset, a sample window of 300 milliseconds is se-475

lected from the original signal. This window represents a segment of the signal476

that encapsulates the duration of the hand gesture. In this segment, the DWT is477

performed to extract valuable features. DWT reveals both the time and frequency478

domain information simultaneously. By applying DWT to the sample window,479

the signal is analyzed at various scales or levels of resolution, providing a multi-480

resolution representation of the hand gesture. Features such as amplitude, fre-481

quency content, and energy distribution across different frequency sub-bands can482

be extracted from the DWT coefficients. These features capture important charac-483

teristics of the hand gesture, enabling further analysis, classification or recognition484

tasks. The comparison of extracted features using DWT for different gestures is485

shown in Fig. 6.486

The Discrete Wavelet Transform (DWT) plays a crucial role in the process of487

extracting distinct and discernible features from surface electromyography (sEMG)488
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Figure 6: Extracted features through DWT from Channel 1

signals for hand gesture recognition. By employing wavelet functions, the DWT489

breaks down the signal into various frequency sub-bands at different scales, re-490

vealing both time and frequency domain information in a simultaneous manner.491

The lower frequency bands provide insight into the global contour and overall492

trends present within the signal, while the higher frequency bands capture tran-493

sient spikes and local patterns. Through wavelet coefficients, the distribution of494

energy across these sub-bands is made evident, showcasing how different ges-495

tures manifest distinct coefficient distributions. For instance, a pinch gesture may496

exhibit a higher concentration of high-frequency coefficients compared to a grip497

gesture. The advantage of wavelets lies in their ability to be localized in time,498

enabling the capture of transient muscle activation spikes. The multi-resolution499

view that DWT offers accentuates the nuances tied to gesture dynamics, revealing500

patterns that might not be visible when examining just the raw signal. Therefore,501

the DWT not only surfaces hidden patterns but also accentuates subtleties, provid-502

ing an augmented feature space when compared to using solely raw sEMG data503

or basic statistical measures. In summary, DWT decomposes the signal in a man-504

ner that uncovers unique spatio-temporal and spectral characteristics of muscle505

activity associated with each gesture, facilitating a more robust feature extraction506

and discrimination compared to utilizing only the original sEMG recordings. Feel507

free to let me know if this elucidation adequately conveys how DWT contributes508

to distinctive feature extraction.509
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3.4. Dataset Pre-Processing:510

Normalizing the data is an essential step in data preprocessing, as it helps511

to improve the performance of many ML algorithms. One of the most common512

normalization techniques is the min-max scaling technique. In this technique, the513

values of a feature are scaled to a range between 0 and 1. The min-max scaling514

technique is given by the following equation:515

Xnorm =
X −Xmin

Xmax −Xmin

(24)

where X is current sample, Xmin and Xmax are the min. and max. values of the516

sample, and Xnorm is the normalized sample value.517

3.5. Evaluation Matrices518

Evaluation matrices are commonly used to assess the performance of clas-519

sification models, including those used for hand gesture recognition. Here, we520

present four widely used evaluation matrices: Accuracy, Precision, Specificity,521

and F1 score. These matrices depend upon the True positive (TP), True Negative522

(TN), False Positive (FP) and False Negative (FN) of the predicted classes.523

3.6. Accuracy524

Accuracy is the ratio of the correctly predicted samples to the total number of525

samples in the dataset;526

Accuracy =
TP + TN

Totalnumberofsamples
(25)

3.7. Precision527

Precision is a metric that indicates how well the model performs in terms of528

minimizing false positives:529

Precision =
TP

TP + FP
(26)

3.8. Specificity530

Specificity is a metric that indicates how well the model performs in terms of531

minimizing false negatives:532

Specificity =
TN

TN + FP
(27)
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Table 4: Gesture Prediction Comparative Analysis
Technique Accuracy Precision Specificity F1 Score

HGS-SCNN 0.9944 0.9944 0.9989 0.9944
AOA-SCNN 0.9778 0.9778 0.9756 0.9778
WOA-SCNN 0.9611 0.9611 0.9622 0.9613
GWO-SCNN 0.9556 0.9556 0.9512 0.9557

3.9. F1 Score533

The F1-score is calculated as:534

F1Score = 2× Precision×Recall

Precision+Recall
(28)

These evaluation matrices help in assessing the performance of hand gesture535

classification models and provide insights into the model’s accuracy, precision,536

specificity, and overall effectiveness.537

3.10. Proposed Scheme:538

The flow of analysis for sEMG sensor data of hand gestures involves multiple539

steps. First, the moving average of the signal is calculated to reduce noise and540

enhance the visibility of underlying patterns. Next, the EMG onset is detected541

to pinpoint the time window associated with the hand gesture. Subsequently, a542

sample window is selected, and the DWT is applied to extract informative fea-543

tures from the signal. This systematic approach provides a scientific framework544

for processing and analyzing sEMG data, facilitating the understanding and in-545

terpretation of hand gestures for various applications such as prosthetics, reha-546

bilitation, or human-computer interaction systems. After feature extraction and547

pre-processing, the dataset is divided into 70-30% training and testing dataset ra-548

tios. After that, the HGS-based SCNN model is trained on training data and tested549

on the testing dataset to check the performance of the proposed model. The de-550

tailed DWT-based HGS-SCNN scheme for hand gesture detection is elaborated551

in Fig. 7. Fig. 8 shows the loss and accuracy of tuned SCNN model. A detailed552

analysis on the results is presented in the next section.553

4. Results and Analysis:554

4.1. Prediction Performance555

The evaluation of prediction performance for different techniques based on556

stacked CNN networks (SCNN) in classifying six distinct hand gestures is pre-557
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Figure 7: Proposed DWT-based HGS-CNN technique
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Figure 8: Loss and Accuracy curve of the HGS tuned SCNN model

sented in Table 4. To delve deeper into the predictive abilities of these techniques,558

a thorough analysis utilizing confusion matrices (as depicted in Fig. 9) and a com-559

parative evaluation of key metrics (shown in Fig. 10) is conducted. A compre-560

hensive breakdown and analysis of these results are presented in the subsequent561

subsections.562

4.1.1. Accuracy563

Accuracy is a fundamental metric reflecting the proportion of correctly pre-564

dicted instances out of the total. Among the techniques analyzed, HGS-SCNN565

stands out with the highest accuracy of 0.9944. This implies an outstanding ability566

to predict hand gestures with a staggering accuracy rate of 99.44%. AOA-SCNN567

closely follows with an accuracy of 0.9778, indicating a slightly lower but still im-568

pressive accuracy rate of 97.78%. WOA-SCNN achieves an accuracy of 0.9611,569

demonstrating a high precision but slightly less than the previous two techniques.570

GWO-SCNN, while effective, exhibits the lowest accuracy among the listed tech-571

niques, with a value of 0.9556.572
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Figure 9: Confusion Matrix Comparison of (a) HGS-SCNN, (b) AOA-SCNN, (c) WOA-SCNN
and (d) GWO-SCNN

4.1.2. Precision573

Precision is a crucial measure denoting the proportion of true positive predic-574

tions out of all predicted positives. HGS-SCNN leads in precision with a score of575

0.9944, implying that 99.44% of the hand gestures predicted as positive by HGS-576

SCNN are indeed correct. AOA-SCNN closely follows with a precision score of577

0.9778, indicating a high level of precision in its predictions. WOA-SCNN and578

GWO-SCNN also demonstrate substantial precision scores of 0.9611 and 0.9556,579

respectively, signifying a high level of correctness in their positive predictions.580

4.1.3. Specificity581

Specificity measures the ability to identify non-target gestures accurately. HGS-582

SCNN excels in specificity, achieving the highest score of 0.9989. This suggests583

that HGS-SCNN identifies non-target gestures with an impressive accuracy rate of584

99.89%. AOA-SCNN follows with a specificity of 0.9756, indicating a high level585

of accuracy in identifying non-target gestures. WOA-SCNN and GWO-SCNN586
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Figure 10: Bar Graph Comparison of Competing Techniques

also exhibit commendable specificity scores of 0.9622 and 0.9512, respectively,587

underscoring their ability to discern non-target gestures with substantial accuracy.588

4.1.4. F1 Score589

The F1 score, a balanced metric considering both precision and recall, pro-590

vides a comprehensive assessment of the overall predictive performance. HGS-591

SCNN achieves an F1 score of 0.9944, suggesting a harmonious trade-off between592

precision and recall and indicating a high overall performance. AOA-SCNN593

closely follows with an F1 score of 0.9778, representing a balanced performance594

in terms of precision and recall. WOA-SCNN and GWO-SCNN also present re-595

spectable F1 scores of 0.9613 and 0.9557, respectively. These scores emphasize596

the ability of these techniques to strike a balance between precision and recall,597

contributing to a robust overall predictive performance.598

Based on the results presented in Table 4, HGS-SCNN stands out by showcas-599

ing superior performance compared to the other techniques. Several key aspects600

highlight its exceptional capabilities:601

• High Accuracy: HGS-SCNN attains the highest accuracy among all the602

techniques, signifying its remarkable precision in predicting hand gestures.603

• High Precision: HGS-SCNN achieves an impressive precision score of 0.9944,604

indicating an extremely low false positive rate. Consequently, the gestures605

predicted as positive by HGS-SCNN are highly likely to be accurate.606

• High Specificity: HGS-SCNN secures the highest specificity among the607
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Table 5: Comparative Analysis of Hand Gesture Detection Presented in Literature
Ref. Data-set Technique Used Acc.
[40] Indian Sign Lan-

guage(Pictorial 6
static coloured im-
ages)

Feature Selection +
NN for Classification
(trained using hybrid
meta-heuristic deer
hunting + gwo)

0.97

[41] Spatial Data-set (Ara-
bic Sign Language
Numerals 1-9)

Radial Basis Function 0.942

[42] Static 9 gestures FS(static; based on
Orientation) + SVM
Classification

0.9137

[43] Six static images HOG + SVM (multi-
class)

0.92

[44] Three static gestures
(Rock, paper, scis-
sors)

FS (static 11 points) +
DNN Classification

0.98

Our ap-
proach

Six Hand gestures HGS Algorithm based
Stacked CNN

0.993

techniques, showcasing its remarkable ability to precisely identify non-608

target gestures. This aspect is crucial in avoiding false positives.609

• High F1 Score: HGS-SCNN achieves a well-balanced F1 score of 0.9944,610

showcasing its adeptness in maintaining an effective trade-off between pre-611

cision and recall. This score signifies that HGS-SCNN excels in minimizing612

both false positives and false negatives.613

4.2. Comparative Analysis614

The Table 5 presented provides a comparative analysis of various hand gesture615

detection techniques found in the literature. Each technique is evaluated based on616

the dataset used, the specific methodology employed, and the accuracy achieved.617

Among the listed approaches, our proposed technique stands out as a superior618

solution.619

Firstly, the proposed technique utilizes a comprehensive dataset consisting of620

six hand gestures. In contrast, other references in the table used datasets with spe-621

cific sign language gestures, spatial data, or a limited number of static images. The622
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breadth and depth of our dataset suggest a more representative and robust training623

environment. Secondly, the proposed technique leverages a stacked convolutional624

neural network (CNN) algorithm for hand gesture detection. CNNs have proven625

to be highly effective in image-related tasks, thanks to their ability to identify pat-626

terns and extract features from visual data. This choice of algorithm showcases627

the sophistication and advanced nature of our approach. In comparison, the other628

techniques in the table include feature selection with ANN, RBF functions, SVM629

with feature selection, and deep neural networks (DNN). While these techniques630

are valuable in their respective contexts, our utilization of a stacked CNN algo-631

rithm demonstrates a more cutting-edge and potentially more accurate approach.632

Lastly, the proposed technique achieves an outstanding accuracy of 0.993, sur-633

passing the accuracies reported in the other references. The highest accuracy in634

the table is 0.98, achieved by a DNN-based approach for a limited set of three635

hand gestures. The significantly higher accuracy of our proposed technique high-636

lights its exceptional capability in accurately classifying and recognizing hand637

gestures. This level of accuracy is vital for real-world applications where precise638

and reliable gesture detection is required.639

5. Discussion640

In this section, we delve into the insights and implications drawn from the pre-641

sented results and the comparative analysis of hand gesture detection techniques.642

5.1. Performance Comparison and Interpretations643

The evaluation of prediction performance using stacked CNN networks (SCNN)644

for hand gesture classification has showcased the outstanding performance of the645

HGS-SCNN technique. With an accuracy of 0.9944, HGS-SCNN has demon-646

strated a remarkable ability to accurately predict hand gestures. Such high accu-647

racy is of paramount importance, particularly in applications like human-computer648

interaction and robotics, where precise gesture recognition is a critical factor. The649

high precision of HGS-SCNN (0.9944) underscores its capability to maintain an650

extremely low false positive rate, implying that the predicted hand gestures are651

highly likely to be correct. This characteristic is vital in applications where in-652

accurate predictions could lead to adverse outcomes. Furthermore, HGS-SCNN653

exhibited the highest specificity (0.9989) among the techniques analyzed, show-654

casing its proficiency in accurately identifying non-target gestures. This aspect is655

crucial in gesture recognition systems to avoid false positives, which can be partic-656

ularly detrimental in applications such as medical diagnostics. The well-balanced657
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F1 score of 0.9944 achieved by HGS-SCNN emphasizes its effectiveness in main-658

taining a trade-off between precision and recall. This is a vital characteristic for659

achieving a high-performing model that minimizes both false positives and false660

negatives.661

In contrast to the HGS-SCNN model, the competitive techniques, namely662

GWO-SCNN, WOA-SCNN, and AOA-SCNN, exhibit suboptimal performance663

in the classification of hand gestures, yielding comparatively lower values across664

evaluation matrices. Specifically, GWO-SCNN encounters challenges in effec-665

tively fine-tuning the Stacked CNN (SCNN) model, resulting in a suboptimal666

resolution with convergence being hindered in local minima during the cost re-667

duction process. The resultant accuracy achieved by GWO-SCNN is recorded at668

95.56%. AOA-SCNN and WOA-SCNN demonstrate relatively higher accuracy in669

comparison to GWO-SCNN. AOA-SCNN leverages a superior exploration strat-670

egy, enabling it to navigate away from local minima, thereby contributing to its671

elevated accuracy. Similarly, WOA-SCNN, while exhibiting less accuracy than672

AOA-SCNN, outperforms GWO-SCNN, showcasing a more proficient optimiza-673

tion in the SCNN model tuning process. AOA-SCNN and WOA-SCNN attain674

accuracy values of 97.78% and 96.11%, respectively. However, it is notewor-675

thy that the HGS-SCNN model surpasses GWO-SCNN, WOA-SCNN, and AOA-676

SCNN across all evaluated metrics. The efficacy of HGS-SCNN is attributed to its677

adeptness in avoiding local minima through a judicious interplay of exploration678

and exploitation phases. This attribute enhances the model’s capacity for accurate679

classification of hand gestures, positioning it as a superior choice compared to680

GWO-SCNN, WOA-SCNN, and AOA-SCNN in the studied context.681

5.2. Comparative Analysis and Key Insights682

The comparative analysis of various hand gesture detection techniques high-683

lighted the strengths of the proposed HGS-SCNN approach. Our technique lever-684

aged a comprehensive dataset encompassing six diverse hand gestures, providing685

a more representative and robust training environment compared to other tech-686

niques that used specific sign language gestures or a limited set of static images.687

The adoption of a stacked convolutional neural network (CNN) algorithm688

demonstrated the advanced nature of our approach. CNNs are known for their689

effectiveness in image-related tasks due to their ability to identify intricate pat-690

terns and extract features from visual data. This choice of algorithm underlines691

our commitment to employing cutting-edge methodologies for hand gesture de-692

tection.693
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Lastly, achieving an accuracy of 0.993 with our proposed technique surpassed694

the accuracies reported in other references, underscoring its superior performance.695

This high accuracy level hints at the potential practical applicability of our ap-696

proach in various domains.697

5.3. Practical Implications, Challenges and Future Avenues698

The superior performance of HGS-SCNN in hand gesture detection carries699

significant practical implications across multiple domains. In human-computer in-700

teraction, our technique has the potential to significantly enhance user experience701

by providing accurate and intuitive gesture-based control systems. In the field of702

robotics, precise gesture recognition can enable seamless and efficient control of703

robotic devices, contributing to advancements in automation and robotics.704

While the proposed HGS-SCNN model shows impressive accuracy in hand705

gesture recognition, like any technology, it’s not without its limitations. One po-706

tential challenge lies in variations in sensor conditions. Real-world scenarios may707

involve different environments, lighting conditions, or hardware variations, which708

could affect the performance of the model. The model might struggle to gener-709

alize well across diverse conditions not accounted for during training. Moreover,710

user-specific nuances can be a hurdle. People have unique ways of performing711

hand gestures, and individual differences in anatomy, muscle structure, or even712

the placement of the sEMG sensors can introduce variability. The model might713

not adapt perfectly to all users, potentially leading to lower accuracy or misclas-714

sifications for certain individuals. The effectiveness of the model could be in-715

fluenced by the size and diversity of the dataset used for training. If the dataset716

does not adequately represent the wide range of potential users and scenarios,717

the model might not generalize well to unforeseen conditions. Furthermore, the718

reliance on the Discrete Wavelet Transform (DWT) for feature extraction might719

introduce limitations. While DWT is effective in capturing spatial and frequency720

information, it might not be optimal for all types of hand gestures or could be sen-721

sitive to certain signal variations. It’s crucial to consider these limitations when722

implementing the HGS-SCNN model in practical applications. Ongoing research723

and refinement could address these challenges, making the model more robust and724

adaptable to a broader range of conditions and user-specific nuances.725

For future research, further exploration of deep learning architectures and op-726

timization techniques could potentially elevate the accuracy and efficiency of hand727

gesture detection systems. Additionally, investigating the application of hand ges-728

ture detection in real-time and dynamic environments would provide valuable in-729

sights for practical deployments, such as in gaming, virtual reality, and assistive730
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technologies.731

6. Conclusion732

This paper introduced a novel approach for hand gesture detection using a733

Henry Gas Solubility-based Stacked Convolutional Neural Network (HGS-SCNN).734

Hand gesture detection has become increasingly important in various domains,735

and our proposed approach offers enhanced accuracy and robustness in this task.736

The stacked architecture of the CNN model allows for effective representation737

learning by capturing both low-level and high-level features.738

Through the utilization of the Discrete Wavelet Transform (DWT) technique739

for feature extraction, our approach successfully captures spatial and frequency740

information, leading to improved discriminative power in the extracted features.741

Extensive experiments were conducted using a dataset of 600 hand gesture sam-742

ples, and the performance of the HGS-SCNN model was evaluated. Comparative743

analysis with SOTA techniques demonstrates the superiority of our proposed ap-744

proach, achieving an impressive accuracy of 99.3%.745

The results validate the effectiveness of our approach in accurately detecting746

hand gestures and highlight the potential of combining DWT-based feature extrac-747

tion with the HGS-SCNN model. This combination offers reliable and robust hand748

gesture recognition, opening up new possibilities for intuitive human-computer or749

human-robot interaction and applications that require gesture-based control.750

Possible future works that can be further carried out are elaborated below:751

• Expanding the gesture vocabulary - The current 6 gestures, while cover-752

ing a useful range, are still limited. Adding more complex uni-manual and753

bimanual gestures can enhance the system’s capabilities.754

• Evaluating personalized models - Training user-specific models that adapt755

to individual variations in muscle anatomy and sEMG patterns may further756

boost accuracy.757

• Exploring sensor fusion - Supplementing sEMG with inertial or depth data758

could make the recognition more robust to ambiguities.759

Acknowledgment760

This research is supported by the Biomechatronics and Collaborative Robotics761

research group at the Top Research Center Mechatronics (TRCM), University of762

Agder (UiA), Norway.763

31



References764

[1] O. Mazhar, B. Navarro, S. Ramdani, R. Passama, A. Cherubini, A real-765

time human-robot interaction framework with robust background invariant766

hand gesture detection, Robotics and Computer-Integrated Manufacturing767

60 (2019) 34–48.768

[2] N. Mendes, Surface electromyography signal recognition based on deep769

learning for human-robot interaction and collaboration, Journal of Intelli-770

gent & Robotic Systems 105 (2) (2022) 42.771

[3] H. Chen, M. C. Leu, Z. Yin, Real-time multi-modal human–robot collab-772

oration using gestures and speech, Journal of Manufacturing Science and773

Engineering 144 (10) (2022) 101007.774

[4] H. Mohyuddin, S. K. R. Moosavi, M. H. Zafar, F. Sanfilippo, A compre-775

hensive framework for hand gesture recognition using hybrid-metaheuristic776

algorithms and deep learning models, Array (2023) 100317.777

[5] S. A. Khomami, S. Shamekhi, Persian sign language recognition using imu778

and surface emg sensors, Measurement 168 (2021) 108471.779

[6] F. Belmajdoub, S. Abderafi, Efficient machine learning model to predict fine-780

ness, in a vertical raw meal of morocco cement plant, Results in Engineering781

17 (2023) 100833.782

[7] J. Zhou, Y. Dai, M. Tao, M. Khandelwal, M. Zhao, Q. Li, Estimating the783

mean cutting force of conical picks using random forest with salp swarm784

algorithm, Results in Engineering 17 (2023) 100892.785

[8] A. Nazir, A. K. Shaikh, A. S. Shah, A. Khalil, Forecasting energy consump-786

tion demand of customers in smart grid using temporal fusion transformer787

(tft), Results in Engineering 17 (2023) 100888.788

[9] S. Sreelakshmi, G. Malu, E. Sherly, R. Mathew, M-net: An encoder-decoder789

architecture for medical image analysis using ensemble learning, Results in790

Engineering 17 (2023) 100927.791

[10] A. Phinyomark, E. Scheme, An investigation of temporally inspired time792

domain features for electromyographic pattern recognition, in: 2018 40th793

Annual International Conference of the IEEE Engineering in Medicine and794

Biology Society (EMBC), IEEE, 2018, pp. 5236–5240.795

32



[11] A. Phinyomark, P. Phukpattaranont, C. Limsakul, Feature reduction and se-796

lection for emg signal classification, Expert systems with applications 39 (8)797

(2012) 7420–7431.798

[12] P. Shenoy, K. J. Miller, B. Crawford, R. P. Rao, Online electromyographic799

control of a robotic prosthesis, IEEE transactions on biomedical engineering800

55 (3) (2008) 1128–1135.801

[13] A. H. Al-Timemy, R. N. Khushaba, G. Bugmann, J. Escudero, Improving802

the performance against force variation of emg controlled multifunctional803

upper-limb prostheses for transradial amputees, IEEE Transactions on Neu-804

ral Systems and Rehabilitation Engineering 24 (6) (2015) 650–661.805

[14] A. Waris, I. K. Niazi, M. Jamil, K. Englehart, W. Jensen, E. N. Kamavuako,806

Multiday evaluation of techniques for emg-based classification of hand mo-807

tions, IEEE journal of biomedical and health informatics 23 (4) (2018)808

1526–1534.809

[15] B. Fatimah, P. Singh, A. Singhal, R. B. Pachori, Hand movement recognition810

from semg signals using fourier decomposition method, Biocybernetics and811

Biomedical Engineering 41 (2) (2021) 690–703.812

[16] N. K. Karnam, A. C. Turlapaty, S. R. Dubey, B. Gokaraju, Classification of813

semg signals of hand gestures based on energy features, Biomedical Signal814

Processing and Control 70 (2021) 102948.815

[17] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, nature 521 (7553) (2015)816

436–444.817

[18] M. Atzori, M. Cognolato, H. Müller, Deep learning with convolutional neu-818

ral networks applied to electromyography data: A resource for the classifica-819

tion of movements for prosthetic hands, Frontiers in neurorobotics 10 (2016)820

9.821

[19] M. Atzori, A. Gijsberts, C. Castellini, B. Caputo, A.-G. M. Hager, S. Elsig,822

G. Giatsidis, F. Bassetto, H. Müller, Electromyography data for non-invasive823

naturally-controlled robotic hand prostheses, Scientific data 1 (1) (2014) 1–824

13.825

[20] W. Geng, Y. Du, W. Jin, W. Wei, Y. Hu, J. Li, Gesture recognition by instan-826

taneous surface emg images, Scientific reports 6 (1) (2016) 36571.827

33



[21] M. H. Zafar, M. Mansoor, M. Abou Houran, N. M. Khan, K. Khan, S. K. R.828

Moosavi, F. Sanfilippo, Hybrid deep learning model for efficient state of829

charge estimation of li-ion batteries in electric vehicles, Energy 282 (2023)830

128317.831

[22] S. K. Raza Moosavi, M. H. Zafar, S. Mirjalili, F. Sanfilippo, Improved barna-832

cles movement optimizer (ibmo) algorithm for engineering design problems,833

in: International Conference on Artificial Intelligence and Soft Computing,834

Springer, 2023, pp. 427–438.835

[23] A. Muqeet, A. Israr, M. H. Zafar, M. Mansoor, N. Akhtar, A novel opti-836

mization algorithm based pid controller design for real-time optimization of837

cutting depth and surface roughness in finish hard turning processes, Results838

in Engineering 18 (2023) 101142.839

[24] Z. A. Kadhuim, S. Al-Janabi, Codon-mrna prediction using deep optimal840

neurocomputing technique (dlstm-dsn-woa) and multivariate analysis, Re-841

sults in Engineering 17 (2023) 100847.842

[25] V. Balaji, S. Narendranath, et al., Optimization of wire-edm process param-843

eters for ni–ti-hf shape memory alloy through particle swarm optimization844

and cnn-based sem-image classification, Results in Engineering 18 (2023)845

101141.846

[26] J. F. Ruma, M. S. G. Adnan, A. Dewan, R. M. Rahman, Particle swarm847

optimization based lstm networks for water level forecasting: a case study848

on bangladesh river network, Results in Engineering 17 (2023) 100951.849

[27] P. Koch, M. Dreier, M. Maass, H. Phan, A. Mertins, Rnn with stacked ar-850

chitecture for semg based sequence-to-sequence hand gesture recognition,851

in: 2020 28th European Signal Processing Conference (EUSIPCO), IEEE,852

2021, pp. 1600–1604.853
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