An Open Framework for teaching Motion Control
for Mechatronics Education

Filippo Sanfilippo*, Martin @kter, Tine Eie and Morten Ottestad
Dept. of Engineering Sciences, University of Agder (UiA), Jon Lilletuns vei 9, 4879, Grimstad, Norway
*Corresponding author: filippo.sanfilippo@uia.no

Abstract—This paper proposes the introduction of a novel open
prototyping framework that involves using low-cost commercial
off-the-shelf (COTS) components and tools for the module of
motion control, within mechatronics education. The goal of this
study is to propose a novel structure for the motion control
module in the engineering mechatronics curriculum. This is
accomplished by integrating students in a series of well-organised
theoretical lectures as well as hands-on, highly engaging labora-
tory group projects. Surface learning parts and deep learning
sections are combined frequently to encourage learners to grasp,
make connections, and expand their knowledge. The structure of
the course as well as the key topics are discussed. The proposed
open framework, which consist of an elevator model, is presented
in details.

Index Terms—education, mechatronics, hands-on learning,
framework.

I. INTRODUCTION

Motion control is a branch of automation that encompasses
the systems and subsystems involved in the controlled move-
ment of machine parts. Precision engineering, micromanufac-
turing, biotechnology, and nanotechnology are just a few of
the fields where motion control systems are widely used for
automation [1]. The key components involved with motion
control usually include an energy amplifier, and one or more
prime movers or actuators. There are two types of motion
control: open loop and closed loop. The main focus of motion
control is the specific automation control of motion systems
with electric actuators such as DC/AC servo motors. Control
of robotic manipulators is also considered as part of the field
of motion control because the majority of robotic manipulators
are driven by electrical servo motors and the primary goal is
the control of motion.

In this work, a novel organisation of the motion control
module for the engineering mechatronics education curriculum
is presented. The aim is to inspire a new approach to teaching
the course. Inspired by our previous work [2], [3], [4], this
study intends to address the following research question:
can thoroughly alternating surface and deep learning sessions
increase understanding, activate relationships, and enhance
students’ knowledge? The basic idea is to organise the course
into three parallel levels: (i) lectures that combine theory and
exercises; (ii) laboratory; (iii) applications, in particular, an
elevator model is prototyped.

The presented course is MAS246-G [5]. This course is a
5th semester module of the three years bachelor’s degree
programme in Mechatronics [6] given at the Department of

Engineering Sciences, Faculty of Engineering and Science,
University of Agder (UiA), Grimstad, Norway. Recommended
previous knowledge for the course includes MAS239 Feedback
Control Systems 1, MAS134 Electrical circuits and digital
engineering, MA178 Mathematics 1, MA-179 Mathematics 2,
or equivalent. This article outlines the overall structure of the
course as well as the primary themes.

The paper is organised as follows. Section II depicts the
course overview, while the laboratories are presented in Sec-
tion III. Section IV describes the selected elevator model. The
proposed architecture for the elevator model is presented in
Section V. Finally, Section VI contains the conclusions and
recommendations for further studies.

II. COURSE OVERVIEW

The course material includes 12 theoretical lectures, 12 lab-
oratory classes, and one course project. Each 6-hour theoretical
lecture is held once a week and followed by a weekly 6-hour
laboratory session. The following is a list of the topics covered
in each lecture:

e Lecture 1: introduction on direct current (DC) machines;

¢ Lecture 2: DC machine’s various drive circuits and oper-
ations;

o Lecture 3: modelling of a DC motor as thermal system;

o Lecture 4: stepper motor types and working principles;

o Lecture 5: control methods for stepper motors;

o Lecture 6: brushless DC electric motors;

e Lecture 7: permanent-magnet synchronous
(PMSM);

o Lecture 8: rotary to rotary motion transmissions;

o Lecture 9: rotary to translational motion transmissions;

o Lecture 10: shaft selection and sizing;

o Lecture 11: lead-lag compensators;

o Lecture 12: modern motion control architecture.

motors

III. LABORATORIES OVERVIEW

The laboratory sessions run in parallel with the theoretical
lectures introduced in Sect. II.

Programming in practice: Arduino

The goal of this lab is to introduce the use of Arduino [7]
as a developing platform for motion control. Motion control
necessitates a number of skills and abilities that can be easily
developed using tools such as Arduino.

Fig. 1: The all in one servo lab (AIOSL).

Unified modelling language (UML) and class exercise

An introduction of the Unified modelling language (UML)
is given with particular emphasis on embedded systems. Dif-
ferent diagrams are introduced including use case diagrams,
class diagrams, sequence diagrams, and state machine dia-
grams [8]. These diagrams are meant to support the design
and development of the course project.

All in one servo lab (AIOSL)

To facilitate the learning process for students, we have
designed a novel platform for doing practical laboratory as-
signments, simulations and demonstrations. The development
of this platform is based on the following key requirements: i)
ease of use, plug and play (PnP), and ii) students engagement,
so that working with the platform should be fun. To meet these
requirements, we have developed a single unit platform with
servo and stepper motor, various inputs and feedback options.
This platform is named “all in one servo lab” (AIOSL) [9] and
it is shown in Figure 1. Among other components, the AIOSL
embeds two motors: a brushed DC motor and a two-phase
stepper motor, respectively. This allows students to develop
multi-function applications. The DC motor gives students the
possibility to design software for motor control and to utilise
lead-lag regulation. For closed loop control, feedback from the
embedded encoder is necessary. This application challenges
the students’ ability to regulate micro-stepping. The compo-
nents of the AIOSL are integrated in the chassis, while also
providing a functional design. In fact, the motors are exposed
through the top panel, giving a more visual perception of their
status and allowing the students to affect their flywheels.

From a hardware perspective, an Arduino Mega [7] is
integrated into the AIOSL.

IV. ELEVATOR MODEL

The course project aims at designing a complete elevator
system to be implemented based on the AIOSL.

A. System requirements

As shown in Figure 2, the system controls a single-cabin
elevator that travels up and down in a building with a set
number of floors. The system requirements are summarised in
Table I [10]. Based on these system requirements, the system
features are mapped to the hardware and software components.

o | v

A

v
<A |00
oMEMS |00
Y 0o
100

v

o o

Fig. 2: An elevator system model with 0 to N floors, including
a car, cables, an elevator machine, controls drive, cabin buttons
and floor buttons.

TABLE I: System requirements.

REQ I | The system controls the movement of an elevator.

REQ 2 | The number of floors is set.

REQ 3 | The elevator is either going up or going down.

REQ 4 | The elevator is driven by a motor which can be either
WINDING, UNWINDING, or STOPPED.

REQ 5 | If not at the top floor, the cabin moves up one floor if the
motor is WINDING

REQ 6 | If not at the bottom floor, the cabin moves down one floor if
the motor is UNWINDING

REQ 7 | The cabin has a door which can be OPEN, HALF, or
CLOSED.

REQ 8 | While the cabin is moving, its door must be closed.

REQ 9 | On each floor except the top one, there is an “up” button.

REQ On each floor except the bottom one, there is a “down” button.

10

REQ Inside the cabin, there are floor buttons, one for each floor.

11

REQ The cabin stops at a particular floor and opens the door if

12 there is a request to serve at that particular floor.

REQ The requests at one floor are cleared once the door is fully

13 open.

REQ The elevator should not move to leave a floor if there are

14 requests to serve at that floor.

REQ The elevator should stay stationary at a floor when there are

15 no requests.

REQ The elevator can only change direction if it has no requests

16 in the same direction, but has some requests in the opposite
direction.

Elevation maps the requirements of WINDING, UNWIND-
ING. Physical doors are implemented to more closely simulate
a real elevator. There is an external cabin caller, and floor
buttons inside the cabin. The model is also equipped with a
floor indicator to visualise the current position. Although not
strictly required, the elevator also includes a path optimiser
for an efficient management of the elevator queue.

V. PROPOSED ARCHITECTURE

A. Hardware design

For the elevator to take use of its functions, students are
engaged in mapping these features into hardware components.

TABLE II: Mapping table for elevator model.

TABLE III: Mechanical components for the elevator model.

Hardware Article Material Size Qty. | Comment
Feature Software
Sensors Actuators @ 8mm -
- Threaded rod Steel 1
Elevation Ground floor switch Stepper with 470 mm
threaded rod Lead nut Brass Hole 8§ mm 1
Doors Servo V-slot Rat Rig Aluminium 20x20x500 mm 1
Floor buttons Button (7-2) profile
inside cabin utton (/- Threaded rod Steel M5 - 500 mm 4
Floor indicator LCD-Screen Nut Steel M5 8
Potentiometer for Flex axle Steel 3mm - 8§ mm 1
Cabin-caller selection, buttons (1-0) | LCD-Screen Lock nut Steel 5 mm 4
for up and down Tube spacer PLA 70 mm 24 3D-printed
. Queueing Short tube .
Path-optimizer system spacer PLA 25 mm 4 3D-printed
Stepper spacer PLA 42x42x18 mm 1 3D-printed
Bottom skirt PLA 152x102x68 mm 1 3D-printed
For elevation (WINDING, UNWINDING), a stepper motor Cabin * PLA 1 3D-printed
. . . - . N cabindoor setup
with a threaded rod is utilised. A mechanical switch indicates M3 machine Steel 4
. cec
when the elevator hits the ground floor. For the doors, a servo screw i
motor is adopted. The floor buttons have sensors corresponding Bottom floor Acrylic 150x100x4 mm | Laser cut
i i K X . Mid floor Acrylic 150x100x4 mm 6 Laser cut
to each floor. The cabin caller is equipped with a potentiometer Top floor Actylic T50x100x4 mm 1 Taser cut
to externally select the floor, and with an LCD screen, also Door servo 1
for floor indication. Even though a mapping to hardware Stepsgf motor 1 | 17HS4401
res

components is prioritised, some features may alternatively be
implemented in software. For example, the path optimiser is
ruled by a queuing system implemented via software. The
overall mapping of the elevator features is shown in Table II.

Referring to Figure 3, wires are connected in the stand to
the stepper motor, ground switch and servo motor. The stepper
motor is used in a 4 pole configuration, although the hardware
supports 6 poles. The AIOSL has a built-in stepper motor drive
(DRV8813) for directional control [9], and a DAC (MCP4922)
for control of the current, hence the motor torque. The stepper
motor in the AIOSL is connected with a one-by-four female
wire head, which makes it easy to switch it out with the wires
coming from the elevator model. To connect the servo and the
ground switch, the extra pinheads which are implemented in
the AIOSL are used. There are two two-by-five pin headers,
each with a 5 volt pin and a ground pin. According to [9],
the pin D12 is connected to the ground switch and D15 to the
servo. The wire connection between the servo motor and the
elevator model is pulled through the printed skirt, up through
drilled holes on the second and third floor, and finally through
a hole in the back of the cabin.

B. Mechanical design

The model’s availability is a crucial consideration. Compo-
nents and production methods that are readily available are

e

AllIn One Senvo Lab

Fig. 3: Connection from the AIOSL to the elevator model.

used for components and for the prototyping process. The
floors are made in acrylic sheets, which are laser cut in the
right shape. The elevator cabin components including doors,
the bottom skirt and a mounting spacer for the stepper motor
are 3D-printed. All metal parts are easily available off the shelf
in hobby shops and some components in hardware stores.

In Table III, all the mechanical components needed for
setting up the elevator model and integrating it with the AIOSL
are described. An exploded view of the elevator model is
shown in Figure 4. The threaded rod with a diameter of 8
mm is the type used for controlling the z axis of 3D printers,
and is usually available as spare part in most shops selling
3D-printers. The M5 is a standardised threaded rod, and four
of them are used for holding the assembly together. The V-
slot is a standard RatRig profile. This part may be switched
with most profile rods. Small adjustments of the profile on the
elevator cabin to fit the selected profile would be necessary.

The main tower part of the elevator model is assembled by

Fig. 4: Exploded view of the elevator model: (1) Bottom skirt,
(2) Stepper motor, (3) Tube spacer, (4) Flex axle, (5) Bottom
floor, (6) Cabin + Cabin door setup, (7) Mid floor, (8) Lead
nut, (9) Threaded rod, (10) V-slot RatRig profile.

first mounting the lock nuts at the end of four M5 threaded
rods, and placed in the corner holes from the underside of
the stand. The bottom floor plate is then threaded on the rods
and placed down in the fitted area in the stand. The stepper is
then mounted from the underside with the M3 bolts through
the bottom plate and the stepper spacer. This is to make sure
that the shaft has the correct height above the plate for the
flex axle to be mounted. The ground switch is mounted on
the side of the spacer with two screws entered through pre-
made holes, making sure that the switch is triggered by the
elevator at the bottom floor. Finally, the v-profile is attached
to the bottom plate with a 5 mm screw from the bottom in
a crescent shaped trail on the stepper spacer. The rest of the
floors are then assembled by putting a spacer on each rod and
a mid floor section. This is repeated six times creating all the
floors. The assembled elevator cabin is then slipped on to the
profile and screwed down into the lead nut. Finally, the short
spacers are mounted on the rods followed by the top plate,
which is secured with two nuts on each rod.

The elevator cabin consists of a main body, two doors and a
top section, containing the door mechanism and a servo. The
door mechanism is operated by a servo pulling a fishing line
through guiding poles on the doors, which again are held up
by two rubber bands. The assembly is mounted to the cabin
body with four M2 machine screws. The servo is connected
by a servo wire through a hole at the bottom two mid floors
and then the bottom plate.

C. Software design

In Figure 5 the UML Class Diagram of the elevator model
is depicted. The “DAC” class is specialised for using the
DAC unit, which controls the current connected to the stepper
driver. This is necessary because of the old type of stepper
driver implemented in the AIOSL. Similar explanation applies
for the “Jmstepper” class too, as this is meant for a driver
where the coils are activated separately. The remaining classes
are created to accommodate the remaining specifications. The
“Elevatordoor” class steers the door servo and keeps track of
its current state, simultaneously as it stores the set boundaries
for the door. The “Switch” class is used to set up multiple
switch inputs as elevator cabin buttons, as well as the floor
buttons on the outside. These two are passed along to the
“Floorchooser” class, which together with the “Potensiometer”
class, passes the selected floor for the queue if up or down
buttons are pushed. The “Elevator” class is connected to
both the “Elevatordoor” and “Jmstepper” class, as well as the
“LCD” class. As the “LCD” class is used in both “Elevator”
and “Floorchooser” the LCD object has to be created in
the main control process and provided for both classes. The
“Queue” class is a queuing operator.

VI. CONCLUSIONS AND FUTURE WORK

This study introduced a comprehensive syllabus of the
motion control module for the engineering mechatronics cur-
riculum. The module blends a series of organised theoretical

Efevator Elevatordoor

~servoOpen float
~servoClosed : float

Quette] ~currentFloor :int
~stepsPerRevoluton :int
“foorHeight: int
“helghtPerReveluton :int
“mainMotorSpeed: int
<F——— -floorStepRatio : int
Elevator (pinint - int, pinin2 it pIin3 11,
Ppinind :nt, groundPin :nt,
ServoPin: nt servoLisi] s float) :Elevator
SWICOD] - Switch&) svoid

Queue () Queue
smainoop ()
+mainSep ()

Elevatordoor (servoPin :int) : Elevatordoor
LS [Sopenoors (yswo
+clseD00s () 5void
“ServoBegin () :void
-angleCompfilter (targetAngle : float,
lastAngle : float, alpha = 0.02 : float) : float

“+updatelnput ()
“nextoor ()
“foorQueie 20]int
-floorDirection [20]: int |
heoor

30508 (nimORtERa) Sl X
2Totmeund (swiehOn- Swiena):veid
~calcNumStep (floors:int): int
Floorchooser DAC
-indDown : int +attach (pinin :int)
-indUp :int. +dac_init () +write (angle : int)
Floorchooser (potPin : int, buttonindex1 :int, LCD +set_dac (a:int,b:int)
e
+updatePot (screenObj_: LCD&, _currentFloor : int
SHIENQbIFL SiAk A cvoid {—{>{ -currentCFloor : int
IAY TCD (IcdPins []:int]): LCD.
| +updateFioor (Floor :int) : void.
+updateFloorChooser (cFloor :int) : void s tepper:

-pin_Lzint
“pin_2:int
-pin_3:int
-pin_4 :int

int
~step_per_revolution :int

~step_delay int

~step_number :int
Jmstepper (nUmberREVOIUTonStEp int,

motor_pin_1 :int, mofor_pin_2::int,

13 :int, motor_pin_4 :int) : mstepper

+selSpeed (whatSpeed :int) :void
+step (number_of_step :int) :void
+version ():int
stepMotor (step_sequence :int) :void

S

“potpinint -pinList[10]: int

-previous\alue [10]: nt

curtentGFloor int

Switch (pinind.: int, pininZ nt, pining - .
pinina :int pnins : int, pininG int,
pinin? :int, pinin i, pining int,
pININLO0 int) : Switch

+switchButtonPressed (index: int) :bool

“whileButonPressed (index int) : bool

rswichCase (index.int) : bool

Potentiometer (pin :int) : Potentiomete]
+potRead () :int

TiquiaCrystal

“begin (x ity :int)
+setCursor (x:int,y:int)
+print ()

Fig. 5: UML Class Diagram for the elevator model.

sessions with practical and highly engaging laboratory exer-
cises. The course culminates with a group project that focuses
on the implementation of an elevator model. The pedagogical
effectiveness of the proposed prototype is evaluated based on
the students’ feedback. In the future, students’ feedback will be
collected to improve their learning experience and the quality
of the provided teaching offer.

APPENDIX A
ELEVATOR OPEN SOURCE REPOSITORY

The elevator open source repository is available on-line
at https://github.com/Microttus/Elevator-model/.

ACKNOWLEDGMENT

This work was supported by the Top Research Centre
Mechatronics (TRCM), University of Agder (UiA), Norway.

REFERENCES

[1] J. Ma, X. Li, and K. K. Tan, Advanced Optimization for Motion Control
Systems. CRC Press, 2020.

[2] F. Sanfilippo, O. L. Osen, and S. Alaliyat, “Recycling a discarded robotic
arm for automation engineering education.” in ECMS, 2014, pp. 81-86.

[3] F. Sanfilippo and K. Austreng, “Enhancing teaching methods on em-
bedded systems with project-based learning,” in Proc. of the IEEE
International Conference on Teaching, Assessment, and Learning for
Engineering (TALE), 2018, pp. 169-176.

[4] F. Sanfilippo and K. Austreng, “Sustainable approach to teaching embed-
ded systems with hands-on project-based visible learning,” INTERNA-
TIONAL JOURNAL OF ENGINEERING EDUCATION, vol. 37, no. 3,
pp. 814-829, 2021.

[5] University of agder (UiA), “Motion control,” https://www.uia.no/
en/studieplaner/topic/MAS246-G, 2022, [Online; accessed 07-March-
2022].

[6] University of agder (UiA), “Bachelor’s programme in mechatronics,”
https://www.uia.no/en/studieplaner/programme/INGMASK3, 2022, [On-
line; accessed 07-April-2022].

[7]1 Arduino, “Arduino,” https://www.arduino.cc/, 2022, [Online; accessed
07-April-2022].

[8] M. Fowler, UML distilled: a brief guide to the standard object modeling
language. Addison-Wesley Professional, 2004.

[9]1 A. Hgrthe, H. Ngdland, and B. Preus-Olsen, All in one Servo Lab,

Arduino™ -based laboratory platform for microcontroller operated

servo systems. University of Agder (UiA), 2019.

T. S. Hoang, “An elevator system — requirements document,” https:

/leprints.soton.ac.uk/422715/2/elevator_requirements.pdf, 2022, [Online;

accessed 07-April-2022].

[10]

