A Review on Perception-driven Obstacle-aided Locomotion for Snake Robots

Filippo Sanfilippo¹, Jon Azpiazu², Giancarlo Marafioti², Aksel A. Transeth², Øyvind Stavdahl¹ and Pål Liljebäck¹

Dept. of Engineering Cybernetics, Norwegian University of Science and Technology, 7491 Trondheim, Norway Email: filippo.sanfilippo@ntnu.no

² Dept. of Applied Cybernetics, SINTEF ICT, 7465 Trondheim, Norway Email: see http://www.sintef.no/

14th International Conference on Control, Automation, Robotics and Vision (ICARCV 2016), Phuket, Thailand

Control strategies

Servironment perception, mapping and representation

Conclusion and future work

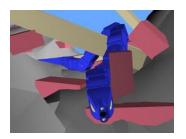
Biological snakes capabilities

Aiko

NFR

FRITFK project SLICE 2011-14 ESA feasibility study

Book Springer Verlag 2013


Mamba

2004 2005 2006 2007 2008 2009 2010 2011 2012 2016

Kulko

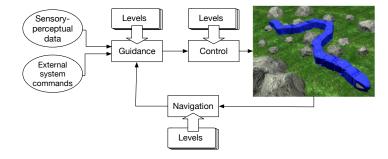
hter project Wheeko

Bio-inspired robotic snakes

Building a robotic snake with such agility:

 different applications in challenging real-life operations, pipe inspection for oil and gas industry, fire-fighting operations and search-and-rescue.

Obstacle-aided locomotion:


 snake robot locomotion in a cluttered environment where the snake robot utilises walls or external objects, other than the flat ground, for means of propulsion.

[1,2]

[1] A.A. Transeth et al. "Snake Robot Obstacle-Aided Locomotion: Modeling, Simulations, and Experiments". In: IEEE Transactions on Robotics 24.1 (Feb. 2008), pp. 88-104. ISSN: 1552-3098. DOI: 10.1109/TR0.2007.914849.

[2] Christian Holden, Øyvind Stavdahl, and Jan Tommy Gravdahl. "Optimal dynamic force mapping for obstacleaided locomotion in 2D snake robots". In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago, Illinois, United States. 2014, pp. 321-328.

Perception-driven obstacle-aided locomotion

Perception-driven obstacle-aided locomotion:

- locomotion where the snake robot utilises a sensory-perceptual system to perceive the surrounding operational environment, for means of propulsion.
- Sensory-perceptual data and external system commands as input for the guidance system (decision-making, path-planning and mission planning activities).
- The navigation system achieves all the functions of perception, mapping and localisation.
- The control system is responsible for low-level adaptation and control tasks.

Stone

Contribution:

- review and discussion of the state-of-the-art, challenges and possibilities of perception-driven obstacle-aided locomotion for snake robots.
- current strategies for snake robot locomotion in the presence of obstacles.
- overview of relevant key technologies and methods within environment perception, mapping and representation.

Motion across smooth, usually flat, surfaces

Existing literature:

- motion across smooth, usually flat, surfaces;
- various approaches to mathematical modelling of snake robot to analyse different control strategies^[3].
- many of the models focus purely on kinematic aspects of locomotion^[4,5], while more recent studies also include the dynamics of motion^[6,7].
- However, many real-life environments are not smooth, but cluttered with obstacles and irregularities.

[3] Pål Liljebäck et al. Snake Robots: Modelling, Mechatronics, and Control. en. Springer Science & Business Media, June 2012. ISBN: 978-1-4471-2996-7.

[4] G. S. Chirikjian and J. W. Burdick. "The kinematics of hyper-redundant robot locomotion". In: IEEE Transactions on Robotics and Automation 11.6 (Dec. 1995), pp. 781–793. ISSN: 1042-296X. DOI: 10.1109/70.478426.

[5] Jim Ostrowski and Joel Burdick. "The Geometric Mechanics of Undulatory Robotic Locomotion". en. In: The International Journal of Robotics Research 17.7 (July 1998), pp. 683—701. ISSN: 0278-3649, 1741-3176. DOI: 10.1177/027836499801700701. URL: http://ijr.sagepub.com/content/17/7/683 (visited on 03/02/2016).

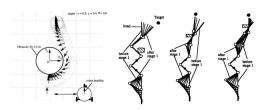
[6] Pavel Prautsch, Tsutomu Mita, and Tetsuya Iwasaki. "Analysis and Control of a Gait of Snake Robot". In: IEEJ Transactions on Industry Applications 120.3 (2000), pp. 372–381. DOI: 10.1541/ieejias.120.372.

[7] P. Liljebäck et al. "Controllability and Stability Analysis of Planar Snake Robot Locomotion". In: IEEE Transactions on Automatic Control 56.6 (June 2011), pp. 1365–1380. ISSN: 0018-9286. DOI: 10.1109/TAC.2010. 2088830.

- Collisions make the robot unable to progress and cause mechanical stress or damage. Different studies have focused on obstacle avoidance locomotion.
- Artificial Potential Field (APF) theory^[8] has been adopted. A controller capable
 of obstacle avoidance was presented in^[9].
- The standard APF approach may cause the robot to end up trapped in a local minima. To escape local minima, a hybrid control methodology using APF with a modified Simulated Annealing (SA) optimisation algorithm was proposed in^[10].
- [8] Min Cheol Lee and Min Gyu Park. "Artificial potential field based path planning for mobile robots using a virtual obstacle concept". In: 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2003. AIM 2003. Proceedings. Vol. 2. July 2003, 735—740 vol. 2. DOI: 10.1109/AIM.2003.1226434.
- [9] C. Ye et al. "Motion planning of a snake-like robot based on artificial potential method". In: 2010 IEEE International Conference on Robotics and Biomimetics (ROBIO). Dec. 2010, pp. 1496–1501. DOI: 10.1109/ROBIO. 2010.5723551.
- [10] D. Yagnik, J. Ren, and R. Liscano. "Motion planning for multi-link robots using Artificial Potential Fields and modified Simulated Annealing". In: 2010 IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications (MESA), July 2010, pp. 421–427, DOI: 10.1109/MESA.2010.5551989.

SINTER

Obstacle avoidance



- An alternative methodology was developed in^[11], where Central Pattern Generators (CPGs) were employed to allow the robot for avoid obstacles or barriers by turning the robot body from its trajectory.
- A phase transition method was presented utilising the phase difference control parameter to realise the turning motion. This methodology also provides a way to incorporate sensory feedback into the CPG model allowing for detecting possible collisions

^[11] N. M. Nor and S. Ma. "CPG-based locomotion control of a snake-like robot for obstacle avoidance". In: 2014 IEEE International Conference on Robotics and Automation (ICRA), May 2014, pp. 347-352, DOI: 10.1109/ICRA. 2014 6906634

SINTER

- By using sensory feedback, a more relaxed approach to obstacle avoidance can be considered.
- The snake robot may collide with obstacles, but collisions must be controlled so that no damage to the robot occurs.
- In^[12], a motion planning system was implemented to provide a snake-like robot with the possibility of accommodating environmental obstructions.
- In^[13], a general formulation of the motion constraints due to contact with obstacles was presented. By using this model, a motion planning algorithm for snake robot motion in a cluttered environment was proposed.

[12] Y. Shan and Y. Koren. "Design and motion planning of a mechanical snake". In: IEEE Transactions on Systems, Man, and Cybernetics 23.4 (July 1993), pp. 1091-1100. ISSN: 0018-9472. DOI: 10.1109/21.247890.

[13] Yansong Shan and Y. Koren. "Obstacle accommodation motion planning". In: IEEE Transactions on Robotics and Automation 11.1 (Feb. 1995), pp. 36-49, ISSN: 1042-296X, DOI: 10.1109/70.345936.

Remark 1. An overview of the lateral undulation as it occurs in nature was first formalised according to the following conditions:

- it occurs over irregular ground with vertical projections;
- propulsive forces are generated from the lateral interaction between the mobile body and the vertical projections of the irregular ground, called push-points;
- at least three simultaneous push-points are necessary for this type of motion to take place;
- during the motion, the mobile body slides along its contacted push-points.

^[14] Zeki Y. Bayraktaroglu and Pierre Blazevic. "Understanding snakelike locomotion through a novel push-point approach". eng. In: Journal of dynamic systems, measurement, and control 127.1 (2005), pp. 146–152. ISSN: 0022-0434. URL: http://cat.inist.fr/?aModele=afficheN&cpsidt=16829403 (visited on 02/26/2016).

Obstacle-aided locomotion

Obstacle-aided locomotion

Obstacle-aided locomotion

Obstacle-aided locomotion

SINTER

[15]

[15] Matt Travers et al. "Shape-Based Compliance in Locomotion". In: Proc. of the Robotics: Science and Systems Conference, 2016.

Obstacle-aided locomotion

Remark 2:

- most of the previous studies highlight the fact that obstacle-aided locomotion is highly dependent on the actuator torque output and environmental friction.
- In [2], the main focus was on how to use optimally the motor torque inputs, which result in obstacle forces suitable to achieve a user-defined desired path for a snake robot.
- There are two main issues to practically use this method for obstacle-aided locomotion: (1) the definition of an automatic method for finding the desired link angles at the obstacles; (2) the automatic calculation of the desired path.

Interacting with the environment

Exploiting the environment for locomotion requires being able to perceive it.

- sensing, on using the adequate sensor or sensor combinations to capture information about the environment;
- mapping, which combines and organises the sensing output in order to create a representation that can be exploited for the specific task to be performed by the robot;
- localisation, which estimates the robot's pose in the environment representation according to the sensor inputs.

Simultaneous localization and mapping (SLAM) in snake robots?

- SLAM: well studied in robotics (some argue even solved).
- Comparatively, there is very little work in snake robots. Even perception is very limited.

- Contact: already in the first snake robot back in 1972^[16]; used for lateral inhibition
- LiDAR based SLAM^[17]; and rotating LIDAR for planning climbing stairs^[18].
- Online localisation, offline mapping using a Time-of-flight (ToF) camera^[19].
- Detection of poles for autonomous pole climbing^[20]; using laser triangulation.

SINTEF

^[16] S. Hirose. Biologically Inspired Robots: Snake-Like Locomotors and Manipulators. Oxford University Press, 1993.

^[17] M. Tanaka, K. Kon, and K. Tanaka. "Range-Sensor-Based Semiautonomous Whole-Body Collision Avoidance of a Snake Robot". In: *IEEE Transactions on Control Systems Technology* 23.5 (Sept. 2015), pp. 1927–1934. ISSN: 1063-6536, DOI: 10.1109/TCST.2014.2382578.

^[18] L. Pfotzer et al. "KAIRO 3: Moving over stairs & unknown obstacles with reconfigurable snake-like robots". In: 2015 European Conference on Mobile Robots (ECMR). Sept. 2015, pp. 1–6. DOI: 10.1109/ECMR.2015.7324209.

^[19] K. Ohno, T. Nomura, and S. Tadokoro. "Real-Time Robot Trajectory Estimation and 3D Map Construction using 3D Camera". In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Oct. 2006, pp. 5279–5285. DOI: 10.1109/IRDS.2006.282027.

^[20] H. Ponte et al. "Visual sensing for developing autonomous behavior in snake robots". In: 2014 IEEE International Conference on Robotics and Automation (ICRA). May 2014, pp. 2779–2784. DOI: 10.1109/ICRA.2014.6907257.

Remark 3:

Knowledge about the environment and its properties, in addition to its geometric representation, can be successfully exploited for improving locomotion performance for obstacle-aided locomotion.

Proposed $\mathsf{in}^{[17]}$: consider if the obstacles are safe for contact during the trajectory planning.

Researchers within other robot communities are already beyond SLAM: semantic mapping.

- Use knowledge to obtain a better representation of the environment.
- Use the semantics embedded in the representation to perform the task (e.g. navigation).

INLN 🖸

Conclusion and future work

Contribution:

- state-of-the-art, challenges and possibilities with perception-driven obstacle-aided locomotion:
- control strategies;
- methods and technologies for environment perception, mapping and representation.

Future work:

- perception-driven obstacle-aided locomotion is still at its infancy;
- strong results which can be used to build further upon from both the snake robot community in particular, and the robotics community in general;
- increase efforts world-wide on realising the large variety of application possibilities offered by snake robots and to provide an up-to-date reference as a stepping-stone for new research and development within this field^[21,22].
- [21] Filippo Sanfilippo et al. "Perception-driven obstacle-aided locomotion for snake robots: the state of the art, challenges and possibilities". In: Journal of Intelligent & Robotic Systems, Springer (2016), Manuscript submitted for publication.
- [22] Filippo Sanfilippo et al. "Virtual functional segmentation of snake robots for perception-driven obstacle-aided locomotion". In: Proc. of the IEEE Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, Manuscript accepted for publication, 2016.

Thank you for your attention

Contact:

 Filippo Sanfilippo, Dept. of Engineering Cybernetics, Norwegian University of Science and Technology, 7491 Trondheim, Norway.

Email: filippo.sanfilippo@ntnu.no.

- [1] A.A. Transeth et al. "Snake Robot Obstacle-Aided Locomotion: Modeling, Simulations, and Experiments". In: *IEEE Transactions on Robotics* 24.1 (Feb. 2008), pp. 88–104. ISSN: 1552-3098. DOI: 10.1109/TR0.2007.914849.
- [2] Christian Holden, Øyvind Stavdahl, and Jan Tommy Gravdahl. "Optimal dynamic force mapping for obstacle-aided locomotion in 2D snake robots". In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago, Illinois, United States. 2014, pp. 321–328.
- [3] Pål Liljebäck et al. Snake Robots: Modelling, Mechatronics, and Control. en. Springer Science & Business Media, June 2012. ISBN: 978-1-4471-2996-7.
- [4] G. S. Chirikjian and J. W. Burdick. "The kinematics of hyper-redundant robot locomotion". In: *IEEE Transactions on Robotics and Automation* 11.6 (Dec. 1995), pp. 781–793. ISSN: 1042-296X. DOI: 10.1109/70.478426.
- [5] Jim Ostrowski and Joel Burdick. "The Geometric Mechanics of Undulatory Robotic Locomotion". en. In: The International Journal of Robotics Research 17.7 (July 1998), pp. 683-701. ISSN: 0278-3649, 1741-3176. DOI: 10.1177/027836499801700701. URL: http://ijr.sagepub.com/content/17/7/683 (visited on 03/02/2016).
- [6] Pavel Prautsch, Tsutomu Mita, and Tetsuya Iwasaki. "Analysis and Control of a Gait of Snake Robot". In: IEEJ Transactions on Industry Applications 120.3 (2000), pp. 372–381. DOI: 10.1541/ieejias.120.372.

- P. Liljebäck et al. "Controllability and Stability Analysis of Planar Snake Robot Locomotion". In: IEEE Transactions on Automatic Control 56.6 (June 2011), pp. 1365–1380. ISSN: 0018-9286. DOI: 10.1109/TAC.2010.2088830.
- [8] Min Cheol Lee and Min Gyu Park. "Artificial potential field based path planning for mobile robots using a virtual obstacle concept". In: 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2003. AIM 2003. Proceedings. Vol. 2. July 2003, 735–740 vol.2. DOI: 10.1109/AIM.2003.1225434.
- [9] C. Ye et al. "Motion planning of a snake-like robot based on artificial potential method". In: 2010 IEEE International Conference on Robotics and Biomimetics (ROBIO). Dec. 2010, pp. 1496–1501. DOI: 10.1109/ROBIO.2010.5723551.
- [10] D. Yagnik, J. Ren, and R. Liscano. "Motion planning for multi-link robots using Artificial Potential Fields and modified Simulated Annealing". In: 2010 IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications (MESA). July 2010, pp. 421–427. DOI: 10.1109/MESA.2010.5551989.
- [11] N. M. Nor and S. Ma. "CPG-based locomotion control of a snake-like robot for obstacle avoidance". In: 2014 IEEE International Conference on Robotics and Automation (ICRA). May 2014, pp. 347–352. DOI: 10.1109/ICRA.2014.6906634.

- [12] Y. Shan and Y. Koren. "Design and motion planning of a mechanical snake". In: *IEEE Transactions on Systems, Man, and Cybernetics* 23.4 (July 1993), pp. 1091–1100. ISSN: 0018-9472. DOI: 10.1109/21.247890.
- [13] Yansong Shan and Y. Koren. "Obstacle accommodation motion planning". In: IEEE Transactions on Robotics and Automation 11.1 (Feb. 1995), pp. 36–49. ISSN: 1042-296X. DOI: 10.1109/70.345936.
- [14] Zeki Y. Bayraktaroglu and Pierre Blazevic. "Understanding snakelike locomotion through a novel push-point approach". eng. In: Journal of dynamic systems, measurement, and control 127.1 (2005), pp. 146–152. ISSN: 0022-0434. URL: http://cat.inist.fr/?aModele=afficheN&cpsidt=16829403 (visited on 02/26/2016).
- [15] Matt Travers et al. "Shape-Based Compliance in Locomotion". In: Proc. of the Robotics: Science and Systems Conference. 2016.
- [16] S. Hirose. Biologically Inspired Robots: Snake-Like Locomotors and Manipulators. Oxford University Press, 1993.
- [17] M. Tanaka, K. Kon, and K. Tanaka. "Range-Sensor-Based Semiautonomous Whole-Body Collision Avoidance of a Snake Robot". In: *IEEE Transactions on Control Systems Technology* 23.5 (Sept. 2015), pp. 1927–1934. ISSN: 1063-6536. DOI: 10.1109/TCST.2014.2382578.

- [18] L. Pfotzer et al. "KAIRO 3: Moving over stairs & unknown obstacles with reconfigurable snake-like robots". In: 2015 European Conference on Mobile Robots (ECMR). Sept. 2015, pp. 1-6. DOI: 10.1109/ECMR.2015.7324209.
- [19] K. Ohno, T. Nomura, and S. Tadokoro. "Real-Time Robot Trajectory Estimation and 3D Map Construction using 3D Camera". In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Oct. 2006, pp. 5279-5285. DOI: 10.1109/IROS.2006.282027.
- H. Ponte et al. "Visual sensing for developing autonomous behavior in snake [20] robots" In: 2014 IEEE International Conference on Robotics and Automation (ICRA). May 2014, pp. 2779–2784. DOI: 10.1109/ICRA.2014.6907257.
- [21] Filippo Sanfilippo et al. "Perception-driven obstacle-aided locomotion for snake robots: the state of the art, challenges and possibilities". In: Journal of Intelligent & Robotic Systems, Springer (2016). Manuscript submitted for publication.
- Filippo Sanfilippo et al. "Virtual functional segmentation of snake robots for [22] perception-driven obstacle-aided locomotion". In: Proc. of the IEEE Conference on Robotics and Biomimetics (ROBIO), Qingdao, China. Manuscript accepted for publication, 2016.