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Introduction

Motivations

d Approaches

Motivations

Trigger: " A Flexible and Common Control Architecture for Rolls-Royce Marine Cranes
and Robotic Arms”

Motivations

o Control different cranes, with dissimilar kinematics, by using a common input
device

o Different kinematic models are needed in order to control different arms

@ Is it possible to develop alternative control algorithms that are able to scale and
handle different manipulator configurations, from simple ones with few DOFs to
the most complex with a considerable number of DOFs?

An alternative solution: no a priori knowledge for the IK model of the arm, a method
that derives its kinematic properties from evolutionary robotics
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Introduction

The Idea

Evolutionary Robotics

@ Initial random population
o Genotype-to-phenotype mapping and fitness assessment

@ Reproduction
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Introduction

Motivations
Th
ER Vs Related Approaches

Behavior-Based Robotics Vs ER

__manipulate the world _
build maps behavior-based

— robotics
sensors explore actuators
_— [Brooks, 1986]

avoid hitting things

locomote

sensors |:> ? IZ> actuators evolutionary robotics
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Introduction

Motivations
Th
ER Vs Related Approaches

Learning Robotics Vs ER

[Kodjabachian & Meyer, 1999]

desired output or \
teaching signal

sensors
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Introduction

Motivations
Th
ER Vs Related Approaches

Artificial Life Vs ER

[Menczer and Belew, 1997] [Floreano and Mondada 1994]
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How to Evolve Robots

How to Evolve Robots

: Evorobot Main
File Paramelers Run Display Help

‘epoch 0 cycle 293 ftness 1.000 titness 20133.000

evolution on the real world evolution on simulation

[Floreano and Nolfi, 1998] + test on the real robot

[Nolfi, Floreano, Miglino, Mondada 1994]
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How to Evolve Robots

ion in the Real World
on in Simulation

Evolution in the Real World

mechanical energy supply analysis
robustness
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How to Evolve Robots

Evolution in the Real V
Evolution in Simulation

Evolution in Simulation

Different physical sensors and actuators may perform differently because of slight
differences in their electronics or mechanics
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Simulating the robot

@ Physical sensors deliver uncertain values and commands to actuators have
uncertain effects
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@ The body of the robot and the environment should be accurately reproduced in
the simulation
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Fitness Function and Genetic Encoding Fitness Function
Gene

etic

Designing the Fitness Function

Fitness space provides a framework for describing fitness functions of autonomous

systems.

Stefano Nolfi & Dario Floreano, 2000
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Fitness Function and Genetic Encoding Fitness Function
Genetic Encoding

Genetic Encoding

Requirements for efficient genetic encoding

o Evolvability
o Expressive power

o Compactess

Simplicity

Fom" 50—
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Adaptation Vs Decomposition and Integration

The Power of Adaption
silient V

Adaptation Vs Decomposition and Integration

The main strategy followed to develop robots has been that of Divide and Conquer
o Divide the problem into a list of hopefully simpler sub-problems

o Build a set of modules or layers able to solve each sub-problem

o Integrate the modules so to solve the whole problem

Unfortunately, it is not clear how a desired behavior should be broken down. The main
reason for which it is difficult to break down a desired behavior into simpler pieces is
that behavior is not only the result of the robot’s control system but the result of the
interaction between the robot and the environment
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Adaptation Vs Decomposition and Integration

The Power of Adaption

Proximal and Distal Descriptions of Behaviors
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Adaptation Vs Decomposition and Integration
\ d v

The Power of Adaption

Discrimination Task

decomposition and integration

discriminate
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Adaptation Vs Decomposition and Integration

The Power of Adaption

Discrimination Task

genotype phenotype
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Adaptation Vs Decomposition and Integration
Nodularity

The Power of Adaption

Discrimination Task
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Evolved robots act so to select sensory patterns that are

easy to discriminate o .
[Scheier, Pfeifer, and Kuniyoshi, 1998]
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The Power of Adaption

Is Modularity Useful in ER?

Garbage Collecting Garbage Collecting
Behavior Behavior

Discriminate

Displace in front

o Is modularity useful in ER?
@ What is the relation between self-organized neural modules and behaviors?
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A Vs De
Modularity and Behaviors
The Power of Adaption lex Beha

The Garbage Collecting Task

motors.

left m. right m.  pick-up  release
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Selector

Neuronsm { ,
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The Power of Adaption

The Garbage Collecting Task

Modular neural controller able to
self-organize outperform other
architectures

successful epochs

0 250 500 750 1000
generations

There is not a correspondence
between self-organized neural
@ modules and sub-behaviors
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The Power of Adaption Evolving Complex Behaviors
Resilient Machines

Incremental Evolution

Selecting individuals directly for their ability to solve a task only works for simple tasks

Incremental Evolution: starting with a simplified version of the task and then

progressively increasing complexity
@ Including in the selection criterion also a reward for sub-components of the

desired behavior
o Start with a simplified version of the task and then progressively increase its
complexity by modifying the selection criterion
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The Power of Adaption Evolving Complex Behaviors
Resilient Machines

Visually-Guided Robots

0 11 18 33

generations

Trondheim

[Cliff et al. 1993; Harvey et al. 1994]
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ition and Integration

The Power of Adaption mpl
Machines

Resilient Machines through Continuous Self-Modeling
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Case Study: Using GA to Control Robotic Arms

Background

Controlling robotic arms

@ A common assumption in most of the previous works is that the IK model of the
arm to be controlled is a priori knowledge

@ When considering arms with redundant degrees of freedom, the inverse kinematics
can have multiple solutions, and therefore singularity problems could arise

@ This method is not very flexible, especially when planning to control different
arms using a universal input device because several IK models are needed
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1

An alternative solution to the problem might consist of using methods that do not
assume a priori knowledge for the IK model of the arm: a solution that derives its
kinematic properties from a machine learning procedure
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Simulations and Results

Case Study: Using GA to Control Robotic Arms

Background
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Case Study: Using GA to Control Robotic Arms

Flowchart

Define genetic
representation and cost
function

v
Acquire manipulator
—»| model, control mode and
target position

Generate initial
population

Find cost for each
chromosome

Select mates

Crossover

Convergence and
time check

Present ouput

Background
GA algorithm

Simulations :

d(x.%,) = X, — X4
Xr = Xy
= Xq + Xg5Al

)
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Background

Case Study: Using GA to Control Robotic Arms

Selection, Crossover and Mutation

@ Select mates: the selection of candidates to be used as parents in the crossover
process is obtained by using the stochastic universal sampling method !, which is
a fitness proportionate selection method.

@ Crossover: the crossover function is defined as a hybrid function that
stochastically switches - with a 50% crossover probability - between using a
single-point and a uniform crossover method, to create new offspring from the
selected parent chromosomes

o Mutation: mutation may occur in a chromosome by stochastically adding a
random value of 5% to the value of its genes. In particular, there is a 0.5%
mutation chance for each gene. Additionally, a form of elitism is also used and
10% of the fittest chromosomes survives unaltered between generations
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1), E. Baker, " Reducing bias and inefficiency in the selection algorithms”, 1985
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Background
GA algorithm

Simulations and Results

Case Study: Using GA to Control Robotic Arms

Convergence and Time Check

@ The GA population stops evolving and the fittest chromosome is returned when
the cost drops below 0.01 or when the overall time spent evolving the population
exceeds 100 ms. Note that, since the target position is normalised according to
the workspace, a value of 0.01 results in being weighed and proportionate to the
workspace. A time limit of 100 ms allows the population to reach a good level of
evolution in the first few steps of iterations without effecting the operator
experience in terms of perception.

o After the first few iterations, the time limit is stochastically seldom reached for
target positions that are located inside the boundaries of the workspace
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Background
GA algorithm

Simulations and Re:

Case Study: Using GA to Control Robotic Arms

Present Output

The genes of the fittest chromosome are then presented as output. In particular,
denoting these genes as ¢ and according to the operation scenario, the output is

obtained as:
0q = Of,
when operating in position control mode, or as:
- 0 — 0
0, — ¥7
At

when operating in velocity control mode.
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Case Study: Using GA to Control Robotic Arms

Simulations and Results

The simulation of a knuckle boom crane model and the trajectory tracking of its Cartesian paths in X, Y and Z coordinates.
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Error distribution for 512 equally-spaced target positions for a the knuckle boom crane model, a SCARA robot and a KUKA youBot robot.
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Simulations and Results

Case Study: Using GA to Control Robotic Arms

Simulations and Results
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Conclusions

Conclusions

Conclusions

To summarize what | have learned in this course

o Evolutionary prospective and importance of self-organization

Self-organization does not mean that an evolutionary system is entirely free of
human design (fitness functions, genotype-to-phenotype mapping, evolutionary
conditions, control architecture, electronics and hardware)

o Evolutionary robotics can be seen as a tool for studying behavioral systems

Design principles may help us to design the characteristics which are not
subjected to evolutionary process
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Conclusions

Conclusions

Thank you for your attention
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